

Available online at www.sciencedirect.com

Archives of Biochemistry and Biophysics 425 (2004) 233-241

www.elsevier.com/locate/yabbi

Genome analyses of *Streptomyces peucetius* ATCC 27952 for the identification and comparison of cytochrome P450 complement with other *Streptomyces*

Niranjan Parajuli, (<u>Devi)B. (Basnet.</u>) Hei Chan Lee, Jae Kyung Sohng, and Kwangkyoung Liou*

[Institute of Biomolecule] Reconstruction, Sun Moon University, Asan, 336-708, Republic of Korea

Received 5 February 2004, and in revised form 4 March 2004

Abstract

We have determined the genome sequence of 8.7 Mb chromosome of *Streptomyces peucetius* ATCC 27952, which produces clinically important anthracycline chemotherapeutic agents of the polyketide class of antibiotics, daunorubicin and doxorubicin. The cytochrome P450 (CYP) superfamily is represented by 19 sequences in the *S. peucetius*. Among those, 15 code for functional genes, whereas the remaining four are pseudo genes. CYPs from *S. peucetius* are phylogenetically close to those of *Streptomyces amernitilis*. Four CYPs are associated with modular PKS of avermectin and two with doxorubicin biosynthetic gene cluster. CYP252A1 is the new family found in *S. peucetius*, which shares 38% identity to CYP51 from *Streptomyces coelicolor* A3 (2). Nine CYPs from *S. peucetius* are found in the cluster containing various regulatory genes including *rar* operon, conserved in *S. coelicolor* A3 (2) and *Streptomyces griseus*. Although two ferredoxins and four ferredoxin reductases have been identified so far, only one ferredoxin reductase was found in the cluster of *CYP147F1* in *S. peucetius*. To date, 174 CYPs have been described from 45 *Streptomyces* species in all searchable databases. However, only 18 CYPs are clustered with ferredoxin. The comparative study of cytochrome P450s, ferredoxins, and ferredoxin reductases should be useful for the future development and manipulation of antibiotic biosynthetic pathways.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Cytochrome P450; Ferredoxin; Ferredoxin reductase; Secondary metabolites; Streptomyces

Cytochrome P450¹ enzymes belonging to the superfamily of genus exist in all eukaryotic organisms, animals, plants, fungi, and microorganisms, and have evolved a function in the initial oxidation of xenobiotics. About 40% (174) of all known bacterial CYPs are found in 45 different species of the industrially important genus *Streptomyces*. In contrast to membrane bound CYPs found in eukaryotes, most of the CYPs from *Streptomyces* are soluble, but only a few of them have been characterized. However, no CYP has been reported in the genomes of several bacterial species examined, including *Escherichia coli* [1]. CYP does not seem to be

* Corresponding author. Fax: +82-41544-2919.

E-mail address: liou@sunmoon.ac.kr (K. Liou).

¹ *Abbreviations used:* CYP, cytochrome P450; ORF, open reading frame; fdx, ferredoxin; fdr, ferredoxin reductase.

essential for the basic metabolism of most prokaryotes, but some of them are involved in catabolism of hydrocarbons, terpenes and others, and provide the sole carbon and energy sources for bacteria [2]. They are also involved in the oxidative, peroxidative, and reductive metabolisms of various endogenous compounds such as steroids, bile acids, fatty acids, prostaglandins, leukotrienes, biogenic amines, and other secondary metabolites.

The main function of CYP is the monooxygenation of various substrates. This requires molecular oxygen and the supply of reducing equivalents from NADPH or NADH. However, most of the bacterial CYPs receive electrons from NADH [2]. They are able to introduce atomic oxygen into allylic positions, double bonds, or even into non-activated C–H bonds. They encode a superfamily of heme-thiolate containing enzymes often located in macrolide antibiotic biosynthetic gene clusters, where they catalyze stereo- and region-specific oxidation of precursors, leading to structural diversity within these molecules [3]. CYP107A1 (EryF) is responsible for hydroxylation of 6-deoxyerythronolide B to erythronolide B in the biosynthesis of erythromycin from Saccharopolyspora erythraea [4]. Macrolactones, and narbomycin, are hydroxylated YC-17 bv CYP107L1 (PikC) involved in pikromycin biosynthesis from Streptomyces venezuelae [5]. Tylosin biosynthetic gene cluster includes CYP113B1 and CYP105L1 in Streptomyces fradiae [6,7]. CYP107D1, encoded oleP, could be responsible for the epoxidation of C-8 in the oleandomycin lactone ring [8]. Two cytochromes, CYP161A3 (AmphL) and CYP105H4 (AmphN), probably carry out post-polyketide modifications during biosynthesis of amphotericin from Streptomyces nodosus [9]. CYP161A3 also complements the CYP161A1 (NysL) involved in nystatin biosynthesis from Streptomyces noursei. C-6 and C-8a of avermectin algycone biosynthesis from Streptomyces avermitilis are hydroxylated by CYP171A1 (AveE) to form a furan ring [10]. CYP122A2 (RapJ) and CYP107G1 (RapN) are possibly involved in hydroxylation of the macrolide at C-9 and C-27 or C-26 and C-32 of rapamycin in Streptomyces hygroscopicus [11]. CYP129A2 and CYP131A1 are components of the anthracycline class of antibiotic, doxorubicin biosynthetic gene clusters from Streptomyces peucetius [12,13]. Other members of the same subfamily (CYP129A1 and CYP131A12) participate in daunorubicin biosynthesis from Streptomyces sp. strain C5 [14]. Glycopeptide antibiotic, complestatin from Streptomyces lavendulae NRRL 2564 also includes the two CYPs: CYP165B5 and CYP165E1 [15]. In Streptomyces griseolus, herbicide metabolism requires CYP105A1 and CYP105B1 [16]. CYP211A1 is clustered in enediyne antitumor antibiotic C-1027 from Streptomyces globisporus [17]. Ansamycin type antibiotic, geldanamycin biosynthetic gene cluster from S. hygroscopicus, involves CYP105U1 [18]. CYP162A1 (NikQ) from Streptomyces tendae [19] and CYP105K2 (SanL) and SanQ from Streptomyces ansochromogenes are associated with biosynthesis of nucleoside antibiotic, nikkomycin [20]. Two cytochromes of the same subfamily, CYP163A1 (NovI) and CYP163A2 (CloI), are involved in coumarin formation in aminocoumarin antibiotics such as novobiocin from Streptomyces spheroids and clorobiocin from Streptomyces roseochromogenes [21]. Another aminocoumarin antibiotic, simocyclinone biosynthetic gene clusters from Streptomyces antibioticus Tü 6040, was cloned with a heterologous probe from a gene encoding CYP163A1 [22]. The existence of CYP105M1 (Orf10) in biosynthesis of the β -lactum antibiotic "clavulanic acid" from Streptomyces clavuligerus has also been reported [23]. Therefore, one may conclude that CYPs are clustered with biosynthesis of various kinds of antibiotics except aminoglycosides and deoxysugar biosynthesis in *Streptomyces* (Table 1).

Although substantial knowledge has been obtained about various CYPs from plants, animals, and microorganisms over the past four decades, a number of major questions remain regarding the structure, function, and mechanism of these enzymes. Further investigations on CYPs in aminoglycosides are essential for the development of new hybrid antibiotics. An approach to produce deoxynitro sugars would facilitate the discovery of new antibiotics, and it is well known that this could be achieved only a novel CYP. Therefore, a complete understanding of the CYP superfamily of Streptomyces is essential for the development of novel secondary metabolites. The fully sequenced genome of Streptomyces coelicolor A3 (2) revealed 7825 ORFs with 18 CYPs genes in the linear 8.7 Mb chromosome [24]. Another fully sequenced genome of S. avermitilis contained approximately 7600 ORFs with 33 CYPs within the 9 Mb chromosome [3]. Database search reveals that Streptomyces sp. and Streptomyces tubercidicus have 16 and 12 CYPs, respectively.

We have sequenced the whole genome (i.e., 8.7 Mb chromosome of *S. peucetius* ATCC 27952) and it will be disclosed in the near future. Reported here are the 19 putative CYPs including DoxA and DnrQ, which are previously known. The classification of CYPs and identification of ferredoxins and ferredoxin reductases in the *S. peucetius* genome are also discussed.

Experimental procedures

Total genome sequencing

Streptomyces peucetius ATCC 27952 was cultured in TSB medium at 28 °C for 2 days for isolation of genomic DNA [25]. pSuperCosI was used to construct a genomic library by digestion of genomic DNA with Sau3AI. The ligated DNA was packaged in vitro using Gigapack III XL packaging extract (Stratagene). The genomic library of S. peucetius was screened, and several corresponding cosmids were isolated by internal sequences of dnrF (5'-AGG TTT GAG GTG GCC TTG ACG-3' and 5'-TCC GCG TCA GTT CGC CGG AGG-3') and dpsY (5'-GGA CTG CCG GTG TGC TGT GGT-3' and 5'-CCG GAA CGT TCA TTC GTC GAC-3'). The total genome of S. percetius has been sequenced using various cosmids, and the shotgun approach [26] generated 2-4kb fragments of the genome. The all non-redundant fragments were then assembled by PHRED [27] and PHRAP (http://www.phrap.org). An additional genomic library was also prepared to assist the whole genomic sequencing.

Table 1 Cytochrome P450s involved in secondary metabolites production in Streptomyces

Species	CYP name ^a	Gene name ^b	Secondary metabolites	Applications
S. lavendulae	CYP107N1 CYP160A1 CYP105F1 CYP165B5° CYP165E1	orf3 mmcN orf4 com02 com01	MitomycinC	AntiHIV
S. antibioticus	CYP107D1 CYP235A1	oleP oleP1	Oleandomycin	Antibacterial
	CYP163A3	simI	Simocyclinone	Antifungal
S. avermitilis	CYP105P1 CYP105D6°	pteC pteD	Filipin	Antifungal
	CYP171A1	aveE	Avermectin	Antiparasitic
S. fradiae	CYP113B1 CYP105L1° CYP154B1	orf1 tylH1 orf16	Tylosin	Antibacterial
S. hygroscopicus	CYP122A2 CYP107G1° CYP105U1	rapJ rapN admP	Rapamycin	Antibacterial
C	CYD15411	gum	Naccominectation	Antitumen
S. carzinosialicus	CYP208A2		Neocarzinostatin	Anutumor
S. griseolus	CYP105A1 CYP105B1°	suaC subC	7-ethoxycoumarin	Antimicrobial
S. nanchangensis	CYP124B2 CYP171A2	nanP meiE	Nanchangmycin Meilingmycin	Anticoccidial
S. natalensis	CYP161A2 CYP105H3°	pimD pimG	Pimaricin	Antifungal
S. nodosus	CYP161A3 CYP105H4 ^c	amphL amphN	Amphotericin	Antifungal
S. noursei	CYP161A1° CYP105H1°	nysL nysN	Nystatin	Antifungal
S. tendae	CYP162A1 CYP105K1°	nikQ nikF	Nikkomycin	Insecticidal
S. peucetius	CYP131A1 CYP129A2	dnrQ doxA	Doxorubicin	Antitumor
S. sp. strain C5	CYP131A2 CYP129A1	dauQ doxA	Daunorubicin	Antitumor
S. ansochromogenes	CYP105K2	SanL SanQ	Nikkomycin	Insecticidal
S. carbophilus	CYP105A3	Sung	Pravastatin	AntiHIV
S. clavuligerus	CYP105M1 ^c	orf10	Clavulinic acid	Antibacterial
S. caelestis	CYP113B2	orf6	Niddamycin	Antibacterial
S. cinnamonensis	CYP124B1	monD	Monensin	Anticoccidial
S. globisporus	CYP211A1	orf29	Antibiotic C-1027	Antitumor
S. narbonensis	CYP107L7P	nbmL	Narbomycin	Antifungal
S. spheroides	CYP163A1	novI	Novobiocin	Antibacterial
S. thermotolerans	CYP107C1	orfA	Carbomycin	Antibacterial
S. roseochromogenes	CYP163A2	cloI	Clorobiocin	Antibacterial
S. venezuelae	CYP107L1	pikC	Pikromycin	Antibacterial

^a CYP names as annotated at website: "http://drnelson.utmem.edu/CytochromeP450.html." ^b Gene names as described in NCBI database.

^cCYPs clustered with ferredoxin.

Identification and analyses of CYPs from database

Genome databases of S. peucetius (unpublished) were formulated in our laboratory for the first time (cf., "http://203.230.12.60"). Other data were collected at various addresses mentioned in the table legends. CYP genes were initially searched based on the heme-binding domain signature, GXXXCXG. The ORFs of all CYP genes obtained using Glimmer 2.0 were annotated by BLAST, followed by manual inspection [28]. The ORFs containing such motifs were further screened for the presence of a highly conserved threonine in the putative I-helix, and the conserved EXXR motif present in the K-helix [29]. The genes including all three motifs were then used as queries for the local BLAST searches of the GenBank, using recent non-redundant protein database from NCBI to identify their closest homologes in other organisms. Each gene was translated to amino acid by GeneDoc program [30]. Dr. David Nelson had carried out the assignment of all CYPs according to the P450 nomenclature [31]. CYPs showing more than 40% identity were placed in the same family, and CYPs having more than 55% were categorized in the same subfamily. New family was assigned for the CYP showing less than 40% similarity to other organisms.

Multiple alignments, phylogenetic analyses, and comparison

The deduced amino acid sequences of the putative *S. peucetius* CYPs were aligned with the CYPs from *S. coelicolor* A3 (2) and *S. amermitilis* by ClustalX [32]. Phylogenetic and molecular evolutionary analyses were conducted using MEGA version 2.1 [33]. Other CYPs involved in secondary metabolites production were searched at "http://drnelson.utmem.edu/CytochromeP450.html" and NCBI from 44 *Streptomyces* species. The accession number and protein identifier in database identified their positions as mentioned in Table 1.

DNA sequence accession numbers

The DNA sequences of all 19 putative CYPs, ferredoxin, and ferredoxin reductases have been deposited in the EMBL GenBank international nucleotide sequence database under accession numbers shown in Tables 3 and 4.

Results and discussion

S. peucetius CYP sequence alignments

Streptomyces peucetius ATCC 27952 is the only organism that produces clinically important anthracycline chemotherapeutic agents of the polyketide class of antibiotics, daunorubicin and doxorubicin. The 8.7 Mb sequence of *S. peucetius* ATCC 27952 revealed 19 CYPs, which cover approximately 0.2% of all coding sequences. Among those, the 5 CYPs; CYP107P3, CYP107U3, CYP107N3, CYP105F2, and CYP105P2 show more than 74% identity to cytochrome P450s of other organisms (Table 2). Threonine in I-helix (oxygen activation motif), glutamic acid and arginine in an EXXR motif of K-helix, and glycine and cysteine in the GXXXCXG signature of heme-binding domain are conserved in 15 CYPs (Table 3). CYP107N3 of *S. peucetius* has the highest homology 91% to CYP107N1 (Orf3) involved in the biosynthesis of mitomycin C from *S. lavendulae*.

The phylogenetic tree comprising CYPs of *S. avermitilis*, *S. coelicolor* A3 (2), and *S. peucetius* indicated that CYPs from *S. peucetius* are closer to those from *S. avermitilis* than *S. coelicolor* A3 (2) (Fig. 1). New CYP family found in *S. peucetius* is remotely related to CYP171A1 from *S. avermitilis*. CYPs belonging to the four subfamilies CYP107P, CYP107U, CYP154A, and CYP157C are present in *S. coelicolor* A3 (2), *S. avermitilis*, and *S. peucetius*. Five CYP subfamilies CYP102B, CYP105D, CYP154C, CYP157A, and CYP158A are also common in *S. coelicolor* A3 (2) and *S. avermitilis*. Similarly, CYPs of three subfamilies CYP105P, CYP107L, and CYP125A, are conserved only in *S. avermitilis* and *S. peucetius*.

Relationships to CYPs from other organisms

Our sequence analysis reveals that the four CYPs CYP147F1, CYP107AH1, CYP107AJ1, and CYP107L9 from *S. peucetius* have significant identity to CYP107L1 (PikC) found in macrolide antibiotics, pikromycin, from *S. venezuelae.* CYP251A1 is the new family found in *S. peucetius*, which shares 38% identity to CYP51 from *S. coelicolor* A3 (2) and eukaryotes [34]. Two other CYPs (CYP252A1 and CYP253A1) from *S. peucetius* also have 32% identity to CYP51. No CYP homologous to CYP51 is found in *S. avermitilis.* The remaining 18 CYPs fit into existing CYP families. Sequence analysis of *S. peucetius* revealed that majority of CYPs belong to CYP107 family.

The CYP164B1 from *S. peucetius* shows 39% identity to CYP164A1 from *Mycobacteriom leprae*, and hypothetical protein and PKS genes follow it. However, two cytochromes are clustered in *M. leprae*. CYP166B1 shows 44% identity to CYP105C1, clustered with cholesterol oxidation from *Streptomyces* species. CYP166B1 is clustered with modular PKS of avermectin in *S. peucetius*.

ATP-binding proteins and FAD-dependent monooxygenase proteins are found to be associated with CYP253A1. Four CYPs CYP107AJ1, CYP107AH1, CYP107U3, and CYP107L9 from *S. peucetius* exhibit

Table 2	
Putative cytochrome P450s in S.	<i>peucetius</i> with their closest homologues

CYP name ^a	Size ^b	ye ^b Match in the databases ^c						
		Species	CYP name ^a	Protein identifier	Identity (%)	Overlap ^d		
CYP147F1	412	Myxococcus xanthus Streptomyces venezuelae	CYP147A1 CYP107L1	AAD26638.1 AAC64105.1	53 39	317 402		
CYP157C4	476	Streptomyces griseus Streptomyces coelicolor	CYP157C3 CYP157C1	BAB40762.1 NP_625901.1	54 51	470 465		
CYP154A3	325	Streptomyces coelicolor Streptomyces fradiae	CYP154A1 CYP154B1	NP_627112.1 AAD40802.1	72 50	320 324		
CYP107AH1	560	Saccharopolyspora erythraea Streptomyces venezuelae	CYP107B1 CYP107L1	AAA26483.1 AAC64105.1	45 44	396 410		
CYP105P2	399	Streptomyces avermitilis Streptomyces lavendulae	CYP105P1 CYP105F1	BAB69309.1 AAD28448.1	89 40	399 403		
CYP107U3	338	Streptomyces coelicolor Saccharopolyspora erythraea	CYP107U1 CYP107B1	NP_627317.1 AAA26483.1	88 43	323 315		
CYP166B1	460	Streptomyces sp. Amycolatopsis mediterranei	CYP105C1 CYP166A1	AAA26718.1 AAC01709.1	44 43	382 381		
CYP105F2	409	Streptomyces lavendulae Streptomyces griseolus	CYP105F1 CYP105B1	AAD28448.1 AAA26825.1	83 43	406 399		
CYP107N3	414	Streptomyces lavendulae Streptomyces maritimus	CYP107N1 CYP107R1	AAD28449.1 AAF81737.1	91 52	409 391		
CYP252A1	504	Bacillus halodurans Streptomyces coelicolor	CYP197A1 CYP51	NP_241445.1 NP_629370.1	36 32	457 456		
CYP164B1	347	Mycobacterium leprae Bacillus subtilis	CYP164A1 CYP107H1	NP_302391.1 BAC03244.1	39 36	320 316		
CYP107AJ1	400	Saccharopolyspora erythraea Streptomyces venezuelae	CYP107B1 CYP107L1	AAA26483.1 AAC64105.1	50 45	333 317		
CYP253A1	429	Bacillus halodurans Streptomyces coelicolor	CYP197A1 CYP51	NP_241445.1 NP_629370.1	33 32	457 441		
CYP125A4	327	Mycobacterium tuberculosis Streptomyces avermitilis	CYP125A1 CYP107W1	AAK48007.1 BAB69197.1	41 29	297 229		
CYP107L9	449	Streptomyces venezuelae Saccharopolyspora erythraea	CYP107L1 CYP107B1	AAC64105.1 AAA26483.1	57 48	304 314		
CYP107P3	373	Streptomyces coelicolor Sinorhizobium meliloti	CYP107P1 CYP202A1	NP_627830.1 NP_385358.1	77 45	213 211		
CYP251A1	448	Streptomyces coelicolor Streptomyces avermitilis	CYP51 CYP171A1	NP_629370.1 BAA84477.1	38 36	420 452		
CYP131A1	438	Streptomyces peucetius Streptomyces antibioticus	CYP131A1 CYP235A1	AAD15266.1 CAA05640.1	100 30	438 416		
CYP129A2	415	Streptomyces peucetius Streptomyces sp. strain C5	CYP129A2 CYP129A1	AAD04715.1 AAB08049.1	100 85	415 223		

^a CYP names as annotated at website: "http://drnelson.utmem.edu/CytochromeP450.html."

^bNumber of amino acids.

^c Database search at NCBI.

^dNumber of amino acid overlap, which exceeds the protein size, is due to the introduction of gaps during BLAST comparison.

similarity to CYP107B1 (EryF) involved in erythromycin biosynthetic pathway from *S. erythaea*. CYP107L1 from *S. venezuelae* has 45% identity to CYP107AJ1, and is clustered with ATP/GTP-binding protein. CYP107L1 also shows 44% similarity to CYP107AH1, and it is associated with putative dehydrogenase and expression regulator. Eukaryotic-type protein is located in the vicinity of CYP107U3, which shows 88% identity to

Table 3 Classification of putative cytochrome P450s in *S. peucetius*

CYP name ^a	Gene name ^b	I-helix	K-helix	Heme-binding motif	Accession number
CYP147F1	cyp0549	²⁴⁷ AGHET ²⁵¹	²⁸⁶ ELLR ²⁸⁹	³⁵¹ LGSGIHSCFG ³⁶⁰	AJ605536
CYP157C4	cyp0618	201 GSET205	250 EHLR253	³⁶⁰ FSSGPHECPG ³⁶⁹	AJ605537
CYP154A3	cyp0673	156GYET260	¹⁹⁵ ETLR ¹⁹⁸	²⁶² FGHGVHFCLG ²⁷¹	AJ605538
CYP107AH1	cyp0749	²⁴² GHKT ²⁴⁶	281 ELVR284	349FGHGSHYCLG358	AJ605539
CYP105P2	cyp7863	²³⁷ AHDT ²⁴¹	276 ELLR279	341FGFGAHQCIG350	AJ605540
CYP107U3	cyp0819	¹⁵⁴ GFET ¹⁵⁸	¹⁹⁸ ELLR ²⁰¹	²⁶³ YGHGIHYCLG ²⁷²	AJ605541
CYP166B1	cyp0879	²⁴³ GLET ²⁴⁷	²⁸² ELLR ²⁸⁵	347 FGSGPHQCMG356	AJ605542
CYP105F2	cyp8812	241GHET245	280 ELLR ²⁸³	345FGHGIHLCLG354	AJ605543
CYP107N3	cyp0881	²⁵¹ GYET ²⁵⁵	290 ELLR 293	³⁵⁶ FGAGPHHCLG ³⁶⁵	AJ605544
CYP252A1	cyp0812	²⁸⁸ GYET ²⁹²	344 EVLR347	417YAGGPRNCVG426	AJ605545
CYP164B1	cyp0831	¹⁶⁵ GHET ¹⁶⁹	204 EVLR ²⁰⁷	²⁶⁸ FAAGPHFCLG ²⁷⁷	AJ605546
CYP253A1	cyp0913	²⁸⁵ GHET ²⁸⁹	341 ESMR344	414FGAGPRKCIG423	AJ605548
CYP251A1	cyp0759	²⁶⁰ GAET ²⁶⁴	316 EVIR 319	388FGAGNRKCIG397	AJ605552
CYP107P3	cyp0887	90HEAT95	129 ELMR132	¹⁹³ FGAGIHYCLG ²⁰²	AJ605551
CYP125A4	cyp0266	¹¹⁰ DRPT ¹¹⁴	144ETGR147	C-terminal missing	AJ605549
CYP129A2	cyp0772	277 GHDT281	313 EALR316	378FGDGPHYCIG387	AF403708
CYP107AJ1	cyp0908	149PLSVT252	205 ERRR ²⁰⁸	Unidentified	AJ605547
CYP107L9	cyp0854	230GHET234	²⁶⁹ EMLR ²⁷²	Unidentified	AJ605550
CYP131A1	cyp0880	²⁷⁵ GAET ²⁷⁹	³¹⁴ ETLR ³¹⁷	Unidentified	L47164

^a CYP names as annotated at website: "http://drnelson.utmem.edu/CytochromeP450.html."

^b Cytochrome P450 deposited in EMBL.

CYP107U1 from *S. coelicolor* A3 (2). CYP107L9 and CYP105L1 share 57% similarity within the same sub-family.

With the exception of *doxA* and *dnrQ*, other four CYPs, *CYP105P2*, *105F2*, *166B1*, and *107N3*, are clustered with putative modular PKS of avermectin biosynthesis in *S. peucetius*. Oxidation of deoxyavermectin aglycon is catalyzed by CYP171A1 (AveE) in *S. avermitilis* (10). CYP251A1 in *S. peucetius* represents AveE homologue protein (36%), but no such gene is found in the *S. coelicolor* A3 (2) genome [35].

Horizontally transferred CYPs

CYP105P2 has 89% similarity to CYP105P1 (PteC), and it is involved in the biosynthesis of antifungal polyene, filipin, and clustered with modular PKS and dehydrogenase in *S. avermitilis*. Interestingly, the same PKS and dehydrogenase homologue are arranged with CYP105P2 in *S. peucetius*. Despite being from different families, CYP105F2 and CYP107N3 are clustered together adjacent to LinA homolog and putative dehydrogenase in *S. peucetius*. Similar organizations are found in the mitomycin C biosynthetic gene cluster from *S. lavendulae*. CYP157C4 is clustered with *rar* operon of *S. peucetius*, which is also conserved in *S. coelicolor* A3 (2) and *S. griseus* [36]. This behavior probably resulted due to the horizontal gene transfer between those species.

CYPs clustered with ferredoxin and ferredoxin reductase

CYP147A1 from *Myxococcus xanthus* shares 53% identity with CYP147F1, and is the only CYP clustered

with ferredoxin reductase in *S. peucetius*. One CYP from *S. coelicolor* A3 (2) and five CYPs from *S. avermitilis* are found to cluster with ferredoxin. No ferredoxin reductase is directly clustered with CYPs in *S. avermitilis* and *S. coelicolor* A3 (2); however, *CYP147B1* and *105Q1* from *S. avermitilis* are associated with ferredoxin, followed by ferredoxin reductase. 11 CYPs are clustered with ferredoxin in other *Streptomyces* (Table 1). One of the most studied CYPs in prokaryotes is CYP105D1 from *S. griseus* [37]. CYP105D4 from *S. lividans* and CYP105D5 from *S. coelicolor* A3 (2) share high homology to CYP105D1, and each of them is clustered with ferredoxin.

It has been suggested that ferredoxin and ferredoxin reductase enhance the expression and activity of each cytochrome [16,39], but the number of ferredoxin genes is limited to 9 and 6 in *S. avermitilis* and *S. coelicolor* A3 (2), respectively. Similarly, 6 and 3 ferredoxin reductases are found in *S. avermitilis* and *S. coelicolor* A3 (2), respectively. On the other hand, *S. peucetius* has 2 ferredoxins and 4 ferredoxin reductases, which will presumably support the activity of the 19 CYPs (Table 4).

CYPs clustered with regulatory elements

CYP251A1 from *S. peucetius* is found in a cluster containing putative RoK-family transcriptional regulatory protein. Another cytochrome of the same species, CYP252A1 is clustered with ATP/GTP-binding protein, threonine 3-dehydrogenase and LysR-family transcriptional regulator. The CYP147F1 is the only cytochrome P450 clustered with ferredoxin reductase, followed by

Fig. 1. NJ tree of CYPs from *S. peucetius*, *S. coelicolor* A3 (2) (prefix sc), and *S. avermitilis* (prefix sav). Horizontal branch lengths proportional to the estimated number of nucleotide substitutions, and bootstrap probabilities (as percentages), as determined for 1000 resamplings, are given *above* or *beside* the internal branches. The bar in the lower left corner indicates 0.1 amino acid substitutions per amino acid for the branch length.

ATP/GTP-binding protein and putative transcriptional regulator in *S. peucetius*. CYP157C4 from *S. peucetius* shows 54% identity to RarE of *rar* operon from *S. griseus*. In *S. coelicolor* A3 (2) *cvn9* showed a remarkable

similarity to *rar* operon of *S. griseus. CYP154A3* lies in a gene cluster containing RNA polymerase sigma factor and MerR-family transcriptional regulatory protein in *S. peucetius.* CYP129A2 and 131A1 are associated with

Table 4	
Putative ferredoxins and ferredoxin reductases in S.	peucetius with their closest homologs

Gene	Accession	Size ^b	Match in the databases ^c			
name ^a number			Species	Gene name	Identity %	Predicted function
fdr549	AJ605536	422	Myxococcus xanthus Mycobacterium tuberculosis	ORF1 MT0716	57 35	CYP reductase Ferredoxin reductase
fdr903	AJ628767	260	Deinococcus radiodurans Streptomyces coelicolor	DR0496 SCF15.02	48 41	Ferredoxin reductase
fdr743	AJ628764	566	Deinococcus radiodurans Trichodesmium sp.	DRA0013 nirA	42 36	Ferredoxin reductase
fdr793	AJ628765	450	Streptomyces coelicolor Streptomyces coelicolor	SC4B10.18c SC7AB.08c	62 55	Ferredoxin reductase
fdx808	AJ628766	352	Mycobacterium tuberculosis Escherichia coli	fdxB D90778.1	42 41	Ferredoxin
fdx734	AJ628763	244	Amycolatopsis mediterranei Rhodococcus fascians	ORF15B fdx	65 55	Transketolase Ferredoxin

^a Ferredoxins and ferredoxin reductases deposited in EMBL.

^b Number of amino acids.

^c Database search at NCBI.

the pathway-specific regulatory gene *dnrI*. Similarly, CYP107AH1 is clustered with putative dehydrogenase and expression regulator in *S. peucetius*. CYP107L9 is found to cluster with the putative transcriptional regulator in *S. peucetius*. Surprisingly, a cytochrome of same subfamily, CYP105L1 (PikC) from *S. venezuelae*, is also located with the cluster containing ATP-binding protein and transcriptional regulator; therefore, a relationship between regulatory genes and CYPs could be expected in metabolism.

CYPs involved in the production of secondary metabolites

About 174 (40%) bacterial CYPs are reported from 45 different *Streptomyces* species in database, but only 50 CYPs are predicted to be involved in the production of secondary metabolites. The remaining CYPs are presumably involved in catabolism of carbon compounds. Although, none of the CYPs, involved in the biosynthesis of aminoglycoside antibiotics, have been assigned in database, many of them have been found to be associated with a wide range of other antibiotics (Table 1). CYP105D1 from S. griseus is one of the most studied bacterial cytochrome, which is involved in the biotransformation and degradation of a diverse array of structurally complex xenobiotics. Other CYPs of the same family: 105D2 from S. griseus, 105D3 from Streptomyces sclerotialus, 105D4 from S. lividans, 105D5 from S. coelicolor A3 (2), and 105D6, 105D7 from S. avermitilis, are suitable candidates for further investigations, since each might complement CYP105D1. The CYP154A1 from S. coelicolor A3 (2) shares 72% identity to CYP154A3 and lies with ATP/ GTP-binding protein. CYP154A1 and CYP154C1 share

42% similarity in *S. coelicolor* A3 (2), but later catalyzes hydroxylation in 12- and 14-membered ring macrolactones in vitro [38]. CYP105D6 and 105D7 from the same subfamily are clustered in *S. avermitilis*, but they are absent in *S. coelicolor* A3 (2).

Significance of CYPs involved in streptomyces

Pathway modification of mitomycin C, oleandomycin, amphotericin, avermectin, and rapamycin can be carried out by a CYP belonging to CYP107L subfamily, since CYP107L1 (PikC) of this family shows flexibility over many macrolites. CYPs of two families, CYP154J and CYP211A, found in the biosynthetic pathway of enediyne antibiotics neocarzinostatin and C-1027, might be candidates for the screening of biosynthetic pathways of other enediyne antibiotics such as kedarcidin, esperamicin, and calicheamicin. Similarly, CYPs belonging to subfamilies CYP129A and CYP131A are also important for the development of hybrid anthracycline antibiotics. CYP161A and CYP105H subfamilies possibly can complement those involved in amphotericin and nystatin antibiotics, respectively.

Conclusions

S. peucetius ATCC 27952 includes 19 cytochrome P450s, 2 ferredoxins, and 4 ferredoxin reductases. Only one cytochrome, CYP147F1 from S. peucetius, is clustered with ferredoxin reductase. CYP251A1 is a new CYP found in S. peucetius, which shares sequence similarity with CYP51 from S. coelicolor A3 (2) and CYP171A1 from S. avermitilis. Six CYPs are associated

with secondary metabolite production in *S. peucetius*. Nine CYPs from *S. peucetius* are clustered with regulatory genes, and four CYPs are arranged with either ATP/GTP-binding proteins or dehydrogenases. We also observe such events in other *Streptomyces* species. The involvement of regulatory genes, ATP/GTP-binding proteins, and dehydrogenases with cytochrome P450 is a subject of further study. Distributions of CYPs in various species of *Streptomyces* reflect their participation either with secondary metabolite genes, ferredoxin, ferredoxin reductase or regulatory operon.

Acknowledgments

We are grateful to Dr. David Nelson for the annotation of CYPs. This project was supported by IMT2000 program, Ministry of Science & Technology, Republic of Korea.

References

- [1] D.R. Nelson, Arch. Biochem. Biophys. 369 (1999) 1-10.
- [2] T. Omura, Biochem. Biophys. Res. Commun. 266 (1999) 690-698.
- [3] D.C. Lamb, H. Ikeda, D.R. Nelson, J. Ishikawa, T. Skaug, C. Jackson, S. Omura, M.R. Waterman, S.L. Kelly, Biochem. Biophys. Res. Commun. 307 (2003) 610–619.
- [4] J.M. Weber, J.O. Leung, S.J. Swanson, K.B. Idler, J.B. McAlpine, Science 252 (1991) 114–117.
- [5] Y. Xue, D. Wilson, L. Zhao, H. Liu, D.H. Sherman, Chem. Biol. 5 (1998) 661–667.
- [6] L.A.M. Davies, E. Cundliffe, Mol. Microbiol. 13 (1994) 349-355.
- [7] R. Fouces, E. Mellado, B. Diez, J.L. Barredo, Microbiology 145 (1999) 855–868.
- [8] A.M. Rodriguez, C. Olano, C. Mendez, C.R. Hutchinson, J.A. Salas, FEMS Microbiol. Lett. 127 (1995) 117–120.
- [9] P. Caffrey, S. Lynch, E. Flood, S. Finnan, M. Oliynyk, Chem. Biol. 8 (2001) 713–723.
- [10] H. Ikeda, T. Nonomiya, M. Usami, T. Ohta, S. Omura, Proc. Natl. Acad. Sci. USA 96 (1999) 9509–9514.
- [11] Molnar, J.F. Aparicio, S.F. Haydock, L.E. Khaw, T. Schwecke, A. Konig, J. Staunton, P.F. Leadlay, Gene 169 (1996) 1–7.
- [12] N. Lomovskaya, S.L. Otten, Y.D. Katayama, L. Fonstein, X.C. Liu, T. Takatsu, A.I. Solari, S. Filippini, F. Torti, A.L. Colombo, C.R. Hutchinson, J. Bacteriol. 181 (1999) 305–318.
- [13] S.L. Otten, X. Liu, J. Ferguson, C.R. Hutchinson, J. Bacteriol. 177 (1995) 6688–6692.
- [14] M.L. Dickens, N.D. Priestley, W.R. Strohl, J. Bacteriol. 179 (1997) 2641–2650.
- [15] H.T. Chiu, B.K. Hubbard, A.N. Shah, J. Eide, R.A. Fredenburg, C.T. Walsh, C. Khosla, Proc. Natl. Acad. Sci. USA 98 (2001) 8548–8553.

- [16] H.A. Hussain, J.M. Ward, Appl. Environ. Microbiol. 69 (2003) 373–382.
- [17] W. Liu, S.D. Christenson, S. Standage, B. Shen, Science 297 (2002) 1170–1173.
- [18] Rascher, Z. Hu, N. Viswanathan, A. Schirmer, R. Reid, W.C. Nierman, M. Lewis, C.R. Hutchinson, FEMS Microbiol. Lett. 218 (2003) 223–230.
- [19] C. Huawei, K.H. Brian, E.C. Sarah, T.W. Christopher, Chem. Biol. 9 (2002) 103–112.
- [20] H. Zeng, H. Tan, J. Li, Curr. Microbiol. 45 (2002) 175-179.
- [21] H. Chen, C.T. Walsh, Chem. Biol. 8 (2001) 301-312.
- [22] U. Galm, J. Schimana, H.P. Fiedler, J. Schmidt, S.M. Li, L. Heide, Arch. Microbiol. 178 (2002) 102–114.
- [23] R. Li, N. Khaleeli, C.A. Townsend, J. Bacteriol. 182 (2000) 4087– 4095.
- [24] D.C. Lamb, T. Skaug, H.L. Song, C.J. Jackson, L.M. Podust, M.R. Waterman, D.B. Kell, D.E. Kelly, S.L. Kelly, J. Biol. Chem. 277 (2002) 24000–24005.
- [25] J. Sambrook, D.W. Russell, Molecular Cloning, Cold Spring harbor Laboratory Press, New York, 2001.
- [26] R. Himmelreich, H. Hilbert, H. Plagens, E. Pirkl, B.C. Li, R.R. Herrmann, Nucleic Acids Res. 24 (1996) 4420–4449.
- [27] B. Ewing, P. Green, Genome Res. 8 (1998) 186-194.
- [28] A.L. Delcher, D. Harmon, S. Kasif, O. White, S.L. Salzberg, Nucleic Acids Res. 27 (1999) 4636–4641.
- [29] D.R. Nelson, L. Koymans, T. Kamataki, J.J. Stegman, R. Feyereisen, D.J. Waxman, M.R. Waterman, O. Gotoh, M.J. Coon, R.W. Estabrook, I.C. Gunsalus, D.W. Nebert, Pharmacogenetics 6 (1996) 1–42.
- [30] K.B. Nicholas, H.B. Nicholas Jr., GeneDoc: a tool for editing and annotating multiple sequence alignments, Editor and Shading Utility Version 2.6.002, 1997.
- [31] D.R. Nelson, Methods Mol. Biol. 107 (1998) 15-24.
- [32] J.D. Thompson, T.J. Gibson, F. Plewniak, F. Jeanmougin, D.G. Higgins, Nucleic Acids Res. 24 (1997) 4876–4882.
- [33] S. Kumar, K. Tamura, I.B. Jakobsen, M. Nei, Bioinformatics 17 (2001) 1244–1245.
- [34] Y. Aoyama, T. Horiuchi, O. Gotoh, M. Noshiro, Y. Yoshida, J. Biochem. Tokyo 124 (1998) 694–696.
- [35] S.D. Bentley, K.F. Chater, A.M. Cerdeno-Tarraga, G.L. Challis, N.R. Thomson, K.D. James, D.E. Harris, M.A. Quail, H. Kieser, D. Harper, A. Bateman, S. Brown, G. Chandra, C.W. Chen, M. Collins, A. Cronin, A. Fraser, A. Goble, J. Hidalgo, T. Hornsby, S. Howarth, C.H. Huang, T. Kieser, L. Larke, L. Murphy, K. Oliver, S. O'Neil, E. Rabbinowitsch, M.A. Rajandream, K. Rutherford, S. Rutter, K. Seeger, D. Saunders, S. Sharp, R. Squares, S. Squares, K. Taylor, T. Warren, A. Wietzorrek, J. Woodward, B.G. Barrell, J. Parkhill, D.A. Hopwood, Nature 417 (2002) 141–147.
- [36] M. Komatsu, Y. Kuwahara, A. Hiroishi, K. Hosono, T. Beppu, K. Ueda, Gene 306 (2003) 79–89.
- [37] H. Hussain, M.J. Ward, Enzyme Microb. Technol. 32 (2003) 790– 800.
- [38] L.M. Podust, Y. Kim, M. Arase, B.A. Neely, B.J. Beck, H. Bach, D.H. Sherman, D.C. Lamb, S.L. Kelly, M.R. Waterman, J. Biol. Chem. 278 (2003) 12214–12221.
- [39] L. Lei, M.R. Waterman, A.J. Fulco, S.L. Kelly, D.C. Lamb, Proc. Natl. Acad. Sci. USA 101 (2004) 494–499.