SUPPORTING INFORMATION for

Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 PKS (Polyketide Synthase) Proceeds Through a Dedicated PKS and Facilitates the Mutasynthesis of New Analogs

SangJoon Mo,^{1,8} Dong Hwan Kim,^{2,3,8} Jong Hyun Lee,¹ Je Won Park,¹ Devi B. Basnet,¹ Yeon Hee Ban,¹ Young Ji Yoo,¹ Shu-wei Chen,¹ Sung Ryeol Park,¹ Eun Ae Choi,¹ Eunji Kim,¹ Ying-Yu Jin,⁴ Sung-Kwon Lee,⁴ Ju Yeol Park,⁵ Yuan Liu,⁶ Mi Ok Lee,² Keum Soon Lee,² Sang Jun Kim,² Dooil Kim,⁷ Byoung Chul Park,⁷ Sang-gi Lee,¹ Ho Jeong Kwon,⁵ Joo-Won Suh,⁴ Bradley S. Moore,⁶ Si-Kyu Lim,^{*,2} and Yeo Joon Yoon^{*,1}

¹Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea. ²GenoTech Corporation, Daejeon 305-343, Republic of Korea. ³Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea, ⁴Division of Bioscience and Bioinformatics, Myongji University, Gyeonggi 449-728, Republic of Korea. ⁵Department of Biotechnology, The Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-746, Republic of Korea. ⁶Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0204, USA. ⁷Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-600, Republic of Korea. ⁸These authors contributed equally to this work.

EMAIL: slim@genotech.co.kr; joonyoon@ewha.ac.kr

Contents

Table S1	. S5
Figure S1	. S8
Figure S2	. S9
Table S2	S10
Figure S3	S12
Table S3	S13
Figure S4	.S14
Table S4	S15
Figure S5	S17
Table S5	S18
Figure S6	S20
Table S6	S21
Table S7	S23
Table S8	S27
Figure S7	S30
Figure S8	S31
Figure S9	S32
Figure S10	S 33
Figure S11	S34
Figure S12	S35
Figure S13	S36
Figure S14	S37
Figure S15	S38
Figure S16	S39
Figure S17	S40

Figure S18	S41
Figure S19	S42
Figure S20	S43
Figure S21	S44
Figure S22	S45
Figure S23	S46
Figure S24	S47
Figure S25	S48
Figure S26	S49
Figure S27	S50
Figure S28	S51
Table S9	S52
Figure S29	S5 4
Figure S30	S55
Figure S31	S56
Figure S32	S 57
Figure S33	S58
Figure S34	S59
Figure S35	S60
Table S10	S61
Figure S36	S63
Table S11	S64
Figure S37	S65
Figure S38	S66
Supporting Methods	S67
Supporting Notes	S86

orting References

	Homology in related organism Best match					
Protein (residues)	Streptomyces kanamyceticus KCTC 9225 ^b	<i>Streptomyces</i> sp. ATCC 55098 ^c	Streptomyces tsukubaensis NRRL 18488	Source	Percent identity/similarity	Proposed function
	Percent identity/s	imilarity (residues)		Organism/GenBank accession no.	(residues)	
TcsA		-	AllA ^d			-
AT	86 / 92	83/91	100 / 100	Nakamurella multipartita DSM	41 / 52	Acyl transferase domain
(300)	(300)	(300)	(431)	44233 / YP_003203169	(578)	
ACP	67 / 78	74 / 82	100 / 100	N. multipartita DSM 44233 /	39 / 50	Acyl carrier protein (ACP)
(99)	(99)	(99)	(431)	YP_003203169	(578)	
TcsB			AllK ^e			
KS- _{N term}	82 / 87	81 / 87	100 / 100	N. multipartita DSM 44233 /	48 / 62	
(448)	(448)	(448)	(796)	YP_003203170	(2014)	Q hatagard sumthaga
KS- _{C term}	78 / 84	75 / 82	100 / 100	Burkholderia thailandensis E264 /	34 / 49	p-ketoacyi syntnase
(320)	(320)	(320)	(796)	ZP_05589458	(2126)	
TcsC	90 / 94	87 / 94	AllR ^f	Streptomyces lasaliensis /	66 / 76	Crotonyl-CoA reductase
(445)	(445)	(443)	100 / 100 (445)	CAQ64684	(454)	
TcsD	87 / 92	86 / 92	AllD ^g	Catenulispora acidiphila DSM	71 / 81	Acyl-CoA/ACP dehydrogenase
(386)	(386)	(386)	99 / 100 (386)	44928 / YP_003117666	(386)	
Tcs1	h	h	AllM ⁱ	Streptomyces pristinaespiralis ATCC	66 / 77	Methionine gamma lyase
(384)			100 / 100 (384)	25486 / ZP_05010287	(405)	

Table S1. Deduced functions of ORFs in the FK506 biosynthetic gene cluster from Streptomyces sp. KCTC 11604BP^a

Tcs2	h	h	AllN ^j	Streptomyces griseoflavus Tu4000 /	52 / 65	AsnC-family transcriptional
(155)			100 / 100 (155)	ZP_05542633	(163)	regulatory protein
Tcs3	h	h	AllP ^k	Streptomyces peucetius ATCC 27952	61 / 74	Cytochrome P450
(409)			99 / 100 (409)	/ CAE53706	(410)	
Tcs4	h	h	AllO ¹	Rhodococcus opacus B4 /	38 / 55	Oxidoreductase
(395)			99 / 100 (395)	YP_002780495	(404)	
Tcs5	h	h	AllS ^m	Corynebacterium glutamicum /	42 / 60	3-oxoacyl-ACP reductase
(250)			99 / 100 (218)	BAD84134	(249)	
FkbG	86 / 89	86 / 90 (99;	FkbG ⁿ	Streptomyces hygroscopicus var.	81 / 86	Hydroxymalonyl-ACP
(222)	(222)	frameshift found)	100 / 100 (222)	ascomyceticus / AAF86386	(222)	methyltransferase
FkbH	86 / 90	86 / 91	0	S. hygroscopicus var. ascomyceticus /	79 / 86	Formation of glyceryl-ACP
(362)	(362)	(362)		AAF86387	(360)	
FkbI	87 / 92	85 / 89	0	S. hygroscopicus var. ascomyceticus /	85 / 90	Acyl-CoA dehydrogenase
(366)	(366)	(366)		AAF86388	(366)	
FkbJ	85 / 89	80 / 88	0	S. hygroscopicus var. ascomyceticus /	73 / 84	Acyl carrier protein
(86)	(86)	(86)		AAF86389	(86)	
FkbK	88 / 90	86 / 89	0	S. hygroscopicus var. ascomyceticus /	83 / 89	Glyceryl-ACP C3 oxidation
(291)	(283)	(282)		AAF86390	(282)	
FkbL	89 / 94	88 / 92	0	S. hygroscopicus var. ascomyceticus /	86 / 93	Lysine cyclodeaminase
(345)	(345)	(345)		AAF86391	(345)	
FkbC	82 / 86	Recombination	0	S. hygroscopicus var. ascomyceticus /	77 / 84	FK506 polyketide synthase
(3598)	(3597)	found		AAF86392	(3591)	

FkbB	83 / 87	Recombination	0	Streptomyces sp. MA6548 /	81 / 86	FK506 polyketide synthase
(7646)	(7591)	found		AAC68815	(7576)	
FkbO	85 / 90	84 / 90	0	Streptomyces sp. MA6548 /	86 / 90	DHCHC biosynthetic protein
(330)	(332)	(333)		AAC68817	(332)	
FkbP	83 / 87	77 / 81	0	Streptomyces sp. MA6548 /	82 / 87	FK506 peptide synthetase
(1532)	(1506)	(1592)		AAC68816	(1504)	
FkbA	84 / 89	82 / 87	0	Structowniag on MA6548 (T20282	81 /87	FK506 polyketide synthase
(6418)	(6408)	(6445)		Streptomyces sp. MA03487 130285	(6420)	
FkbD	89 / 92	88 / 91	o	S. hygroscopicus var. ascomyceticus /	88 / 93	FK506 C9 hydroxylase
(388)	(388)	(388)		AAF86397	(388)	
FkbM	82 / 90	85 / 91	0	Streptomyces sp. MA6548 /	84 / 91	31-O-demethyl-FK506
(260)	(212)	(260)		AAC44360	(260)	methyltransferase
FkbN	82 / 89	82 / 89	0	S. hygroscopicus var. ascomyceticus /	71 / 82	ATP dependent transcriptional
(923)	(934)	(934)		AAF86399	(913)	regulator
FkbQ	84 / 90	81 / 89	0	S. hygroscopicus var. ascomyceticus /	83 / 88	Thioesterase II
(262)	(255)	(255)		AAF86400	(247)	
Tcs6	h	h	0	Pectobacterium carotovorum WPP14	34 / 58	Putative lipoprotein
(69)				/ ZP_03831823	(276)	
Tcs7	h	h	0	Streptomyces clavuligerus ATCC	77 / 84	Lup family transmitting lange later
(474)				27064 / EDY53357	(304)	Lysk-ranning transcriptional regulator

^aGenBank accession no. HM116537; ^bHM116536; ^cHM116538; ^dADG39431; ^eADG39432; ^fADG39433; ^gADG39434; ^hnot present; ⁱADG39435; ^jADG39436; ^kADG39437; ¹ADG39438; ^mADG39439; ⁿADG39440; ^onot reported.

Figure S1. HPLC-ESI-MS/MS analysis of FK506 congeners obtained from wild-type FK506 (1)producing *Streptomyces* sp. KCTC 11604BP and five mutant strains from which *tcs1*, *tcs2*, *tcs3*, *tcs4* or *tcs5* had been in-frame-deleted. The vertical blue dotted lines indicate the identity of the FK506 congeners 1 and FK520 (2). Tracing of both 1 and 2 was done in multiple reactions monitoring mode by selecting mass transit from the ammonium-adducted molecular ion to the specific fragmented product ion: 821 > 576 for 1 and 809 > 564 for 2.

		b	Signature motif	I	II	Ш
32			TCSA_AT_KCTC 11604BP	DHERLD	GHSLGE	GPFH
22 24	mmRifR AT4		TCSA_AT_KCTC 9225	DHERLD	GHSLGE	GPFH
	emEkbB AT4		TCSA_AT_ATCC 55098	DHERLD	GHSLGE	GPFH
27	mmRanB AT6		dmDszD	QTQFTQ	GHSLGE	AAFH
	mmEkbC AT5		dmFenF	RTMNAQ	GHSLGE	APFH
	mmGdmAL AT1		dmLnmG	RTEYAQ	GHSLGE	AAFH
			dmMmpIII_AT2	QTRFTQ	GHSLGE	APFH
100	moGdmAll AT5		dmPedD	LTQYTQ	GHSLGE	GAHF
54 100			mAveAI_AT2	QTRYAQ	GHSLGE	HAFH
49	mmSorB AT5		mEpoA_AT0	QTAFTQ	GHSIGE	HAFH
14	moSorA AT3		mFkbA_AT10	DTLYAQ	GHSVGE	HAFH
	mmAveAll AT6		mGdmAIII_AT6	RTEFTQ	GHSIGE	HAFH
84	moNidAlV AT6		mHbmAIII_AT6	RTEFTQ	GHSIGE	HAFH
	omNidAll AT5		mNidAI_AT1	RTEYTQ	GHSVGE	HAFH
99 100			mNysC_AT3	DTGWAQ	GHSIGE	HAFH
			mPimSI_AT3	QTAYAQ	GHSIGE	HAFH
	mmepoc_ATT		mRapA_AT2	ETGYAQ	GHSVGE	HAFH
98			mRifA_AT2	QTMYTQ	GHSIGE	HAFH
			mSorA_AT2	QTAFTQ	GHSIGE	HAFH
			mmAveAII_AT6	QADVVQ	GHSQGE	YASH
93			mmEryAI_AT1	RVEVVQ	GHSIGE	MAAH
60	mFKDA_AI10		mmEpoC_AT1	RIDVVQ	GHSMGE	VASH
67			mmFkbC_AT5	RVEVVQ	GHSQGE	YASH
35	mRapA_AI2		mmGdmAI_AT1	RVDVVQ	GHSQGE	YASH
64	mEpoA_AI0		mmHdmAI_AT1	RVDVVQ	GHSQGE	YASH
	mGdmAllI_AI 6		mmNidAIII_AT4	RVDVVQ	GHSQGE	YASH
79 43	mHdmAllI_AT6		mmNysB_AT2	RVDVVQ	GHSQGE	YASH
	mSorA_AI2		mmPimSII_AT7	RVDVVQ	GHSQGE	YASH
84	mRifA_AI2		mmRapB_AT6	RVDVVQ	GHSQGE	YASH
38	mNysC_AT3		mmRifB_AT4	RVDVVQ	GHSQGE	YASH
87	mPimSI_AT3		mmSorB_AT5	RVDVVQ	GHSQGE	YASH
	TcsA_AT_KCTC 11604BP		mmStiD_AT4	RVEVVQ	GHSMGE	VASH
100	TcsA_AT_KCTC 9225		moFkbA_AT7	THFAHQ	GHSLGE	HAGE
97 📖	TcsA_AT_ATCC 55098		moGdmAII_AT5	RVDVLQ	GHSQGE	FAGH
	dmFenF		moHbmAII_AT5	RVDVLQ	GHSQGE	FAGH
100	dmPedD		moNidAIV_AT6	RADVVQ	GHSQGE	FAGH
100	dmMmpIII_AT2		moSorA_AT3	RIEVVQ	GHSQGE	VASH
73	dmDszD		emFkbB_AT4	RVDVVH	GHSQGE	CPTH
54 L	dmLnmG		emNidAIII_AT5	RVDVVQ	GHSQGE	TAGH
			emTylG_AT5	RVDVVQ	GHSQGE	TAGH

Figure S2. Phylogenetic analysis of TcsA AT domains and their signature motifs. (a) Phylogenetic tree of the acyl transferase (AT) domains obtained by comparing the amino acid sequence of each TcsA AT domain derived from three 1-producing strains with those in the NCBI non-redundant (nr) protein database. (b) TcsA AT domain signature motifs. Three dominant motifs, composed of 6, 6, and 4 amino acid residues, are assigned with a group of ATs. Color codes used in this figure are: yellow, discrete malonyl (dm)-specific ATs; blue, malonyl (m)-specific ATs; green, methylmalonyl (mm)-specific ATs; orange, methoxylmalonyl (mo)-specific ATs; purple, ethylmalonyl (em)-specific ATs. See **Table S2**.

Ductoin	Organicm	GenBank AT no.		Substrate
riotein	Organish	accession no	(position)	specificity
TcsA_AT	Streptomyces sp. KCTC 11604BP	HM116537	4303	
TcsA_AT	Streptomyces kanamyceticus KCTC	HM116536	8307	
	9225			
TcsA_AT	Streptomyces sp. ATCC 55098	HM116538	8307	
FkbB	Streptomyces sp. KCTC 11604BP	HM116537	AT4 (65716853)	
FkbB	S. kanamyceticus KCTC 9225	HM116536	AT4 (65166798)	
DszD	Sorangium cellulosum	AAY32968	1291	
FenF	Bacillus subtilis	AAF08794	1303	Discusto
LnmG	Streptomyces atroolivaceus	AAN8520	1276	Discrete
MmpIII	Pseudomonas fluorescens	AAM12912	AT2 (327607)	specific AT
PedD	symbiont bacterium of Paederus	AAS47563	1276	speenie
	fuscipe			
AveAI	Streptomyces avermitilis	BAA84474	AT2 (26412910)	
ЕроА	So. cellulosum	AAF62880	AT0 (545841)	
FkbA	Streptomyces hygroscopicus var.	AAF86396	AT10 (59046160)	
	ascomyceticus ATCC 14891			
GdmAIII	Streptomyces hygroscopicus	AAO06918	AT6 (585886)	
HdmAIII	S. hygroscopicus	AAY28227	AT6 (585886)	Malonyl-CoA-
NidAI	Streptomyces caelestis	AAC46024	AT1 (15321821)	specific AT
NysC	Streptomyces noursei ATCC 11455	AAF71776	AT3 (546835)	
PimSI	Streptomyces natalensis	CAC20931	AT3 (38314120)	
RapA	S. hygroscopicus	CAA60460	AT2 (37984061)	
RifA	Amycolatopsis mediterranei	AAC01710	AT2 (27182976)	
SorA	So. cellulosum	AAK19883	AT2 (26292930)	

Table S2. Sequences used in Figures S2 and S37

AveAII	S. avermitilis	BAA84475	AT6 (48255114)	
EpoC	So. cellulosum	AAF62882	AT1 (541836)	
EryAI	Saccharopolyspora erythraea	CAM00062	AT1 (109425)	
	NRRL 2338			
FkbC	S. hygroscopicus var. ascomyceticus	AAF86392	AT5 (531807)	
	ATCC 14891			
GdmAI	S. hygroscopicus	AAO06916	AT1 (16451941)	Methylmalonyl-
HdmAI	S. hygroscopicus	AAY28225	AT1 (16301925)	CoA-specific
NidAIII	S. caelestis	AAC46026	AT4 (571868)	AT
NysB	S. noursei ATCC 11455	AAF71775	AT2 (21172416)	
PimSII	S. natalensis	CAC20921	AT7 (38624138)	
RapB	S. hygroscopicus	CAA60459	AT6 (21382418)	
RifB	A. mediterranei	AAC01711	AT4 (564851)	
SorB	So. cellulosum	AAA79984	AT5 (21282422)	
StiD	Stigmatella aurantiaca Sg a15	CAD19088	AT4 (583878)	
FkbB	S. hygroscopicus var. ascomyceticus	AAF86393	AT4 (64796761)	Ethylmalonyl-
	ATCC 14891			CoA-specific
NidAIII	S. caelestis	AAC46026	AT5 (20112306)	АТ
TylG	Streptomyces fradiae	AAB66506	AT5 (20992394)	
FkbA	S. hygroscopicus var. ascomyceticus	AAF86396	AT7 (523774)	
	ATCC 14891			
GdmAII	S. hygroscopicus	AAO06917	AT5 (23522650)	Methoxymalonyl-
HdmAII	S. hygroscopicus	AAY28226	AT5 (23502648)	CoA-specific AT
NidAIV	S. caelestis	AAC46027	AT6 (576872)	
SorA	So. cellulosum	AAK19883	AT3 (47105002)	

Figure S3. Phylogenetic analysis of TcsA ACP domains and their sequence alignment. (a) Phylogenetic tree of the acyl carrier protein (ACP) domains obtained by comparing the amino acid sequence of each TcsA ACP domain derived from three 1-producing strains with those in the NCBI nr protein database. Color codes used in this figure are: green, ACP domains from type I PKSs; blue, ACP domains from type II PKSs; orange, ACP from *E. coli* FAS. (b) Sequence alignment of TcsA ACP domains with other ACPs from PKSs and FAS. The conserved active site is framed in red. See **Table S3**.

Duratation	0	GenBank	ACP	
Protein	Organism	accession no	position	Description
TcsA_ACP	Streptomyces sp. KCTC 11604BP	HM116537	329427	
TcsA_ACP	Streptomyces kanamyceticus KCTC 9225	HM116536	328426	
TcsA_ACP	Streptomyces sp. ATCC 55098	HM116538	331429	
AveAI	Streptomyces avermitilis	BAA84474	366441	
EpoD	Sorangium cellulosum	AAF62883	14241505	
EryAII	Saccharopolyspora erythraea NRRL 2338	CAM00064	13851470	
GdmAI	Streptomyces hygroscopicus	AAO06916	10001085	Tune I DKS
NidAIII	Streptomyces caelestis	AAC46026	13521437	TypeTFKS
NysB	Streptomyces noursei ATCC 11455	AAF71775	14801546	
RifB	Amycolatopsis mediterranei	AAC01711	16121697	
TylG	Streptomyces fradiae	AAB66506	14501533	
Act	Streptomyces coelicolor A3(2)	ACPCAA45045	186	
DpsG	Streptomyces peucetius	AAD04718	184	
FrnJ	Streptomyces roseofulvus	AAC18105	185	
FrnN	S. roseofulvus	AAC18109	183	Tarra II DVC
Oct	Streptomyces rimosus	P43677	1 95	Type II PKS
TcmM	Streptomyces glaucescens	AAA67517	183	
WhiE	Streptomyces coelicolor	P23153	190	
ZhuG	Streptomyces sp. R1128	AAG30194	186	
EcACP	Escherichia coli	AAB27925	178	FAS

Table S3. Sequences used in Figure S3

Figure S4. Phylogenetic analysis of TcsB KS domains and their signature motifs. (**a**) Phylogenetic tree of the β-keto-acyl synthase (KS) domains obtained by comparing the amino acid sequence of each TcsB KS domain derived from three **1**-producing strains into the NCBI nr protein database. (**b**) TcsB KS domain signature motifs. Four dominant motifs, composed of 5, 5, 6, and 5 amino acid residues, are assigned with a group of KSs. Color codes used in this figure are: green, typical KS domains from type I PKSs; orange, typical KS^Q domains from type I PKSs; purple, KSs from type II PKSs; blue, CLF subunits from type II PKSs; yellow, KSIII subunits from type II PKSs. See **Table S4**.

Drotoin	Organism	GenBank	KS	Description
Trotem	Or gamsin	accession no	position	Description
TcsB_KS- _{N term}	Streptomyces sp. KCTC 11604BP	HM116537	16463	
TcsB_KS- _{N term}	Streptomyces kanamyceticus KCTC 9225	HM116536	16463	
TcsB_KS- _{N term}	Streptomyces sp. ATCC 55098	HM116538	16463	
TcsB_KS- _{C term}	Streptomyces sp. KCTC 11604BP	HM116537	477796	
TcsB_KS- _{C term}	S. kanamyceticus KCTC 9225	HM116536	477796	
TcsB_KS- _{C term}	Streptomyces sp. ATCC 55098	HM116538	477796	
AveAI	Streptomyces avermitilis	BAA84474	483913	
EpoD	Sorangium cellulosum	AAF62883	30263452	
EryAII	Saccharopolyspora erythraea NRRL2338	CAM00064	33457	
GdmAI	Streptomyces hygroscopicus	AAO06916	11031530	
LnmI	Streptomyces atroolivaceus	AAN85522	19312345	Type I KS
NidAIII	Streptomyces caelestis	AAC46026	38463	
NysB	Streptomyces noursei ATCC 11455	AAF71775	44464	
RifB	Amycolatopsis mediterranei	AAC01711	37462	
TylG	Streptomyces fradiae	AAB66506	45469	
MonAI	Streptomyces cinnamonensis	AAO65796	19426	
NidAI	S. caelestis	AAC46024	23430	Type I KSQ
OleAI	Streptomyces antibioticus	AAF82408	10428	Type TK5
TylG	S. fradiae	AAB66504	45451	
ActI_a subunit	Streptomyces coelicolor A3(2)	CAC44200	1467	Type II KS
DpsA	Streptomyces peucetius	AAA65206	1419	
FrnL	Streptomyces roseofulvus	AAC18107	1425	
OxyA	Streptomyces rimosus	AAZ78325	1425	
TcmK	Streptomyces glaucescens	AAA67515	1426	

Table S4. Sequences used in Figure S4

WhiE_ α subunit	Streptomyces coelicolor	P23155	1423	
ZhuB	Streptomyces sp. R1128	AAG30189	1417	
ActI_ β subunit	S. coelicolor A3(2)	CAC44201	1407	
DpsB	S. peucetius	AAA65207	1425	
FrnM	S. roseofulvus	AAC18108	1426	Type II
OxyB	S. rimosus	AAZ78326	1422	CLF
TcmL	S. glaucescens	AAA67516	1409	
WhiE_ β subunit	S. coelicolor	P23156	1424	
ZhuA	Streptomyces sp. R1128	AAG30188	1415	
DpsC	S. peucetius	AAA65208	1353	Type II
FrnI	S. roseofulvus	AAC18104	1336	KSIII
ZhuH	Streptomyces sp. R1128	AAG30195	1 339	

Figure S5. Phylogenetic analysis of TcsCs and their signature motif. (**a**) Color codes used in this figure are: blue, crotonyl-CoA carboxylase/reductase (CCR); purple, butyryl-CoA/propionyl-CoA carboxylase; green, enoyl-ACP reductase; yellow, acetoacetyl-CoA reductase. (**b**) Sequence alignment of TcsCs with a group of CCRs. The NADP(H) binding site is framed in red. (**c**) TcsC NADP(H) binding motif. A dominant motif, composed of 10 amino acid residues, is assigned with a group of CCRs as aligned, and the GXGXXAXXA NADP(H) binding motif is conserved. See **Table S5**.

	GenBank			
Protein	Organism	accession no	Residues	Function
TcsC	Streptomyces sp. KCTC 11604BP	HM116537	445	
TcsC	Streptomyces kanamyceticus	HM116536	445	
	КСТС 9225			
TcsC	Streptomyces sp. ATCC 55098	HM116538	443	
CCR	Streptomyces lasaliensis	CAQ64684	454	Crotonyl CoA reductase
CCR	Streptomyces collinus	AAA92890	447	Crotonyl CoA reductase
CCR	Streptomyces cinnamonensis	AAD53915	453	Crotonyl CoA reductase
CCR	Streptomyces coelicolor A3(2)	CAA22721	447	Crotonyl-CoA
				carboxylase/reductase
CCR	Rhodobacter sphaeroides	ACJ71669	430	Crotonyl-CoA
				carboxylase/reductase
CCR	Methylobacterium extorquens	ACS38140	432	Crotonyl-CoA
	AM1			carboxylase/reductase
SalG	Salinispora tropica	ABP73651	460	Crotonyl-CoA
				carboxylase/reductase
PccA	M. extorquens AM1	ACS40950	667	Butyryl-CoA/propionyl-CoA
				carboxylase
PccB	M. extorquens AM1	ACS38134	510	Butyryl-CoA/propionyl-CoA
				carboxylase
FabI	Escherichia coli str. K-12 substr.	BAA14841	262	Enoyl-ACP reductase
	W3110			
FabL	Bacillus subtilis subsp. subtilis	CAB12693	250	Enoyl-ACP reductase
	str. 168			
FabV	Vibrio cholerae bv. albensis	ABX38717	401	Enoyl-ACP reductase

Table S5. Sequences used in Figure S5

InhA	Mycobacterium tuberculosis	CAB02034	269	Enoyl-ACP reductase
	H37Rv			
FabK	Streptococcus pneumoniae	AAF98273	324	Trans-2-enoyl-ACP reductase
Etr1P	Candida tropicalis	Q8WZM3	386	Enoyl-ACP reductase
PhaB	M. extorquens AM1	AAK11537	242	Acetoacetyl-CoA reductase

Figure S6. Phylogenetic analysis of TcsDs and their sequence alignment. (a) Phylogenetic tree of the acyl-ACP or acyl-CoA dehydrogenase (DH) obtained by comparing the amino acid sequence of each TcsD derived from three 1-producing strains with those in the NCBI nr protein database. Acyl-ACP DHs are shown in blue and acyl-CoA DHs in black. (b) Sequence alignment of TcsDs along with acyl-ACP dehydrogenases (FabI and Asm15), as well as a group of acyl-coA DHs (ACADS_R, ACADSB, ACADM_P, and ACADM_H). Positions substituted with hydrophobic residues, which are commonly observed in acyl-ACP DHs (TcsD as well as FkbI and Asm15), are framed in red. See **Table S6**.

Ductoin	0	GenBank	D 11	
Protein	Organism	accession no	Kesidues	Function
TcsD	Streptomyces sp. KCTC 11604BP	HM116537	386	
TcsD	Streptomyces kanamyceticus	HM116536	386	
	KCTC 9225			
TcsD	Streptomyces sp. ATCC 55098	HM116538	386	
FkbI	Streptomyces hygroscopicus var.	AAF86388	366	Acyl-ACP dehydrogenase
	ascomyceticus ATCC 14891			
Asm15	Actinosynnema pretiosum subsp.	AAM54093	357	Acyl-ACP dehydrogenase
	auranticum			
ACADL	Homo sapiens (human)	P28330	430	Long chain-specific acyl-
				CoA dehydrogenase
ACADVL	Homo sapiens	P49748	655	Very long chain-specific
				acyl-CoA dehydrogenase
ACADM_H	Homo sapiens	P11310	421	Medium chain-specific acyl-
				CoA dehydrogenase
ACADM_P	Sus scrofa (pig)	AAW30430	421	Medium chain-specific acyl-
				coA dehydrogenase
ACADS_H	Homo sapiens	P16219	412	Short chain-specific acyl-
				CoA dehydrogenase
ACADS_M	Megasphaera elsdenii	AAA03594	383	Short chain-specific acyl-
				CoA dehydrogenase
ACADS_R	Rattus norvegicus (Norway rat)	AAA40669	414	Short chain-specific acyl-
				CoA dehydrogenase
ACADSB	Homo sapiens	P45954	432	Short/branched chain-
				specific acyl-CoA

Table S6. Sequences used in Figure S6

				dehydrogenase
ACAD9	Homo sapiens	Q9H845	621	Acyl-CoA dehydrogenase
				family member 9
FadE	Escherichia coli K-12	Q47146	814	Acyl-CoA dehydrogenase
FadE12	Mycobacterium tuberculosis	P71539	388	Acyl-CoA dehydrogenase
GCDH	Homo sapiens	Q92947	438	Glutaryl-CoA dehydrogenase
IBD	Homo sapiens	Q9UKU7	415	Isobutyryl-CoA
				dehydrogenase
IVD	Homo sapiens	P26440	423	Isovaleryl-CoA
				dehydrogenase

Strain/vector	Relevant characteristics	Reference
Bacterial strains		
<u>Escherichia coli</u>		
DH5a	Host for general cloning	New England Biolabs
BL21(DE3)	Host for protein expression	Novagen
BL21(DE3)pLysS	Host for protein expression	Novagen
EPI300TM	Host for gene library construction	Epicentre Biotechnol.
ET12567/pUZ8002	Donor strain for intergeneric conjugation between E. coli and Streptomyces	MacNeil, D.J. et al. ¹
BL21 (DE3)pLysS/pTCSA-ACP	Strain for ACP _{tcsA} protein expression	This study
BL21(DE3)/pTCSC	Strain for TcsC protein expression	This study
BL21(DE3)pLysS/pSFP	Strain for Sfp (PPTase) protein expression	This study
<u>Streptomyces</u>		
ATCC 55098 (MA6858)	Wild-type FK506 (1)-producing strain	Motamedi, H. et al. ²
KCTC 11604BP	Wild-type 1-producing strain	This study
KCTC 9225	Wild-type 1-producing strain	Muramatsu, H. et al. ³
ATCC 14891	Wild-type FK520 (2)-producing strain	Wu, K. et al. ⁴
ΔtcsA	Mutant of KCTC 11604BP with an in-frame deletion of <i>tcsA</i> , produces 2 & FK523 (12)	This study
ΔtcsB	Mutant of KCTC 11604BP with an in-frame deletion of <i>tcsB</i> , produces 2 & 12	This study
ΔtcsC	Mutant of KCTC 11604BP with an in-frame deletion of <i>tcsC</i> , produces 2 & 12	This study
ΔtcsD	Mutant of KCTC 11604BP with an in-frame deletion of <i>tcsD</i> , produces 2 & dihydro-FK506 (18)	This study

Table S7. Bacterial strains and plasmids used in this study

Δtcs1	Mutant of KCTC 11604BP with an in-frame deletion of <i>tcs1</i> , produces 1 & 2	This study
Δtcs2	Mutant of KCTC 11604BP with an in-frame deletion of $tcs2$, produces 1 & 2	This study
Δtcs3	Mutant of KCTC 11604BP with an in-frame deletion of $tcs3$, produces 1 & 2	This study
Δtcs4	Mutant of KCTC 11604BP with an in-frame deletion of $tcs4$, produces 1 & 2	This study
Δtcs5	Mutant of KCTC 11604BP with an in-frame deletion of $tcs5$, produces 1 & 2	This study
ΔfkbA	Mutant of KCTC 11604BP with an in-frame deletion of $fkbA$, does not produce 1 or 2	This study
S. lividans TK24	Host for protein expression	Walczak, R.J. <i>et al</i> ⁵
S. lividans TK24/pTCSD	TK24 mutant, expresses heterologous <i>tcsD</i> using pTCSD	This study

Plasmids

pCCFOS1 (fosmid)	Vector for genomic library construction	Epicentre Biotechnol.
Litmus 28	Multi-purpose E. coli cloning vector	New England Biolabs
pGEM-Teasy	PCR fragment cloning vector	Promega
pKC1139	High-copy-number temperature-sensitive E. coli-Streptomyces shuttle vector	Bierman, M. et al. ⁶
pET15b, pET28a	E. coli protein expression vector	Novagen
pGF101	Sfp expression plasmid based on pET30a(+)	Zhou, P. et al. ⁷
pSE34	pWHM3 with P_{ermE^*} promoter	Yoon, Y.J. et al. ⁸
 p∆TCSA	Deletion plasmid with in-frame deletion of 1,287-bp internal tcsA fragment	This study
p∆TCSB	Deletion plasmid with in-frame deletion of 2,088-bp internal tcsB fragment	This study
p∆TCSC	Deletion plasmid with in-frame deletion of 1,041-bp internal tcsC fragment	This study
p∆TCSD	Deletion plasmid with in-frame deletion of 1,152-bp internal tcsD fragment	This study
p∆TCS1	Deletion plasmid with in-frame deletion of 1,110-bp internal tcs1 fragment	This study

p∆TCS2	Deletion plasmid with in-frame deletion of 171-bp internal tcs2 fragment	This study
p∆TCS3	Deletion plasmid with in-frame deletion of 1,209-bp internal tcs3 fragment	This study
p∆TCS4	Deletion plasmid with in-frame deletion of 864-bp internal tcs4 fragment	This study
p∆TCS5	Deletion plasmid with in-frame deletion of 666-bp internal tcs5 fragment	This study
р∆FKBA	Deletion plasmid with in-frame deletion of 18,171-bp internal <i>fkbA</i> fragment	This study
pTCSC	N, C-terminal His ₆ -tagged TcsC expression plasmid based on pET28a(+)	This study
pTCSA-ACP	N-terminal His ₆ -tagged ACP _{tcsA} expression plasmid based on pET15b(+)	This study
pSFP	N-terminal His ₆ -tagged Sfp expression plasmid based on pET15b(+)	This study
pTCSD1	N-terminal His ₆ -tagged plasmid based on pET15b(+), contains <i>tcsD</i> ORF	This study
pTCSD	N-terminal His ₆ -tagged TcsD expression plasmid based on pSE34	This study
Fosmid clones		
From KCTC 11604BP		
From KCTC 11604BP fos1004F01	Fosmid clone, contains bases 1-40,366 of FK506 biosynthetic gene cluster	This study
<i>From</i> KCTC 11604BP fos1004F01 fos1005D02	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster	This study This study
<i>From</i> KCTC 11604BP fos1004F01 fos1005D02 fos1006D05	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster	This study This study This study
<i>From</i> KCTC 11604BP fos1004F01 fos1005D02 fos1006D05 <i>From</i> KCTC 9225	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster	This study This study This study
<i>From</i> KCTC 11604BP fos1004F01 fos1005D02 fos1006D05 <i>From</i> KCTC 9225 fos1006G02	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 1–35,521 of FK506 biosynthetic gene cluster	This study This study This study This study
<i>From</i> KCTC 11604BP fos1004F01 fos1005D02 fos1006D05 <i>From</i> KCTC 9225 fos1006G02 fos1012A09	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 1–35,521 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 31,026–67,758 of FK506 biosynthetic gene cluster	This study This study This study This study
From KCTC 11604BP fos1004F01 fos1005D02 fos1006D05 From KCTC 9225 fos1006G02 fos1012A09 fos1004E04	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 1–35,521 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 31,026–67,758 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 41,430–85,253 of FK506 biosynthetic gene cluster	This study This study This study This study This study
From KCTC 11604BP fos1004F01 fos1005D02 fos1006D05 From KCTC 9225 fos1006G02 fos1012A09 fos1004E04 fos1010E10	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 1–35,521 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 31,026–67,758 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 41,430–85,253 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 76,978–111,990 of FK506 biosynthetic gene cluster	This study This study This study This study This study This study
From KCTC 11604BP fos1004F01 fos1005D02 fos1006D05 From KCTC 9225 fos1006G02 fos1012A09 fos1010E10 From ATCC 55098	Fosmid clone, contains bases 1–40,366 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 39,116–80,661 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 58,172–97,743 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 1–35,521 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 31,026–67,758 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 41,430–85,253 of FK506 biosynthetic gene cluster Fosmid clone, contains bases 76,978–111,990 of FK506 biosynthetic gene cluster	This study This study This study This study This study This study

fos1010H09	Fosmid clone, contains bases 9,843–44,811 of FK506 biosynthetic gene cluster	This study
fos1012B03	Fosmid clone, contains bases 27,398–72,806 of FK506 biosynthetic gene cluster	This study
fos1001F05	Fosmid clone, contains bases 59,900–95,979 of FK506 biosynthetic gene cluster	This study

Primer	Sequence 5' to 3' (restriction site underlined)	Restriction enzyme
TcsALF	TTT <u>AAGCTT</u> CCGTCGGATCGGGGGCGGCAG	HindIII
TcsALR	AAA <u>GGATCC</u> GAAGAGGAACGCCACCCCAC	BamHI
TcsARF	TTT <u>AGATCT</u> TGATCCGGTCGTGATCTCCC	BglII
TcsARR	AAA <u>GAATTC</u> GTCGCCGGGCAGGTGCGC	EcoRI
TcsBLF	GAC <u>AAGCTT</u> ATGCTGGCGGTGAAGGCG	HindIII
TcsBLR	CCG <u>TCTAGA</u> CCAGAAGGAATCGAGCCGGAA	XbaI
TcsBRF	CAG <u>TCTAGA</u> GTGATCCGTGCCCTGCACTCC	XbaI
TcsBRR	GCC <u>GAATTC</u> GATGACGATGTCCGGGTCG	EcoRI
TcsCLF	TTT <u>AAGCTT</u> AACAAGTCCCTGCTCGGTCA	HindIII
TcsCLR	AAC <u>GGATCC</u> GTCTTCGACGGGGCTCCCGG	BamHI
TcsCRF	AAA <u>AGATCT</u> TCCCGGGTCTACCCCCTCGA	BglII
TcsCRR	TTT <u>GAATTC</u> CTCACCCAGGCCCTGACGC	EcoRI
TcsDLF	GCT <u>AAGCTT</u> CTCAGGCGTCTGCGGATGC	HindIII
TcsDLR	ATC <u>GGATCC</u> TTCGCTCACCGGGGCTGCC	BamHI
TcsDRF	AGC <u>AGATCT</u> GGCATGTTCTGGTCAGTCC	BglII
TcsDRR	GTC <u>GAATTC</u> CATGCCACGAACGGGTCGA	EcoRI
Tcs1LF	TAT <u>AAGCTT</u> ACTCGTCGCACGCGGCAGC	HindIII
Tcs1LR	ATA <u>TCTAGA</u> CTCACCCAGGCCCTGACGC	XbaI
Tcs1RF	ATA <u>TCTAGA</u> CCAGTGATGCGAAGGCATG	XbaI
Tcs1RR	GAC <u>GAATTC</u> CAGGAGGTTGACGGTGGTT	EcoRI
Tcs2LF	ATT <u>AAGCTT</u> GGGCGAACTCCTCGTTCG	HindIII
Tcs2LR	ATTTTT <u>GGATCC</u> CGCACGAGTCTCGGG	BamHI
Tcs2RF	GAC <u>GGATCC</u> TCTGAATCGGAGATTCGT	BamHI

Table S8. Primers used in this study

Tcs2RR	TTA <u>GAATTC</u> GTGGCCGTTGGAGATGAA	EcoRI
Tcs3LF	AGC <u>AAGCTT</u> AGTCCTCTGAGGAGCTGGTAG	HindIII
Tcs3LR	TCG <u>AGATCT</u> CACGAGGTCTCCTTGGAGACA	BglII
Tcs3RF	AAA <u>GGATCC</u> GTCATCATCGACCCGTAG	BamHI
Tcs3RR	TTT <u>GAATTC</u> TCCTTGCTGGTCTGGACG	EcoRI
Tcs4LF	TTT <u>AAGCTT</u> CGGCGTGGAGGCGTGGTCG	HindIII
Tcs4LR	AAA <u>GGATCC</u> CGTGAGGCCCTCGGCGACA	BamHI
Tcs4RF	AAA <u>GGATCC</u> GACGAGGTGGACTCCCACG	BamHI
Tcs4RR	TTT <u>GAATTC</u> CCAGCACCCTGTCGTCCCG	EcoRI
Tcs5LF	CCG <u>AAGCTT</u> ACAGCACGGGGATACTCTG	HindIII
Tcs5LR	GGA <u>TCTAGA</u> CAGCCGTTCGGCGATCGCG	XbaI
Tcs5RF	AAA <u>TCTAGA</u> ATGCGCTGACGCGGCCCCG	XbaI
Tcs5RR	TTT <u>GGATCC</u> ACGGTCGACTCACGCCGCC	BamHI
FkbDF	GAGCGGCACGGTS(C/G)GGY(C/T)TCG	For fosmid selection
FkbDR	CGGGCAGCATCTCGGACGG	For fosmid selection
FkbOF	TGGGCCCGCACCGN(A/C/G/T)CGACCTGTT	For fosmid selection
FkbOR	GGCGATGTTGTCCAGGGCGACN(A/C/G/T)TCGC	For fosmid selection
FkbALF	GTTACCAAGCTTGTACCGAGGACCACGTAC	HindIII
FkbALR	GAATCC <u>GGATCC</u> GACCGT TTTGTCCTGTTC	BamHI
FkbARF	TTTACC <u>GGATTC</u> TTCACCGGCTCCACCGAT	BamHI
FkbARR	GGGTCC <u>TCTAGA</u> AGAGAGTGTCGAGGAGATCG	XbaI
TcsCF	ATTA <u>GGATCC</u> ATGACCCACGTTCGCGA	BamHI
TcsCR	TATATACTCGAGCCGGGGGCTGCCCCTT	XhoI
TcsAF	CATATGACCAGTGGGGTGGCGTTC	NdeI
TcsAR	<u>GGATCC</u> TCACCGCCGCCCGGA	BamHI

S28

SfpF	ATA <u>CATATG</u> AAGATTTACGGAATTTATATGGACC	NdeI
SfpR	ATA <u>GGA TCC</u> TTATAAAAGCTCTTCGTACGA	BamHI
TcsDF	TTAACC <u>CATATG</u> AGCGAATCCGAACGCC	NdeI
TcsDR	TATT <u>CTCGAG</u> CTAGGTACGTTTCGCGGT	XhoI

Figure S7. ¹H NMR (250 MHz, CDCl₃) spectrum of the synthetic 3-oxopentanoyl-SNAC (13) thioester. See **Supporting Methods** for the detailed synthesis.

Figure S8. ¹³C NMR (62.5 MHz, CDCl₃) spectrum of the synthetic 3-oxopentanoyl-SNAC (13) thioester. See Supporting Methods for the detailed synthesis.

Figure S9. ¹H NMR (250 MHz, CDCl₃) spectrum of the synthetic *trans*-2-pentenyl-SNAC (14) thioester. See Supporting Methods for the detailed synthesis.

Figure S10. ¹³C NMR (62.5 MHz, CDCl₃) spectrum of the synthetic *trans*-2-pentenyl-SNAC (14) thioester. See Supporting Methods for the detailed synthesis.

Figure S11. ¹H NMR (250 MHz, CDCl₃) spectrum of the synthetic pentanoyl-SNAC (15) thioester. See Supporting Methods for the detailed synthesis.

Figure S12. ¹³C NMR (62.5 MHz, CDCl₃) spectrum of the synthetic pentanoyl-SNAC (15) thioester. See Supporting Methods for the detailed synthesis.

Figure S13. ¹H NMR (250 MHz, CDCl₃) spectrum of the synthetic allylmalonyl-SNAC (16) thioester. See **Supporting Methods** for the detailed synthesis.

Figure S14. ¹³C NMR (62.5 MHz, CDCl₃) spectrum of the synthetic allylmalonyl-SNAC (16) thioester. See Supporting Methods for the detailed synthesis.

Figure S15. ¹H NMR (250 MHz, CDCl₃) spectrum of the synthetic propylmalonyl-SNAC (17) thioester. See Supporting Methods for the detailed synthesis.

Figure S16. ¹³C NMR (62.5 MHz, CDCl₃) spectrum of the synthetic propylmalonyl-SNAC (17) thioester. See Supporting Methods for the detailed synthesis.

Figure S17. ¹³C enrichment of FK506 (1), FK520 (2), and FK523 (12). ¹³C NMR (125MHz, CDCl₃) spectra of 1 (a), 2 (b), and 12 (c). % incorporation = (A-B)/B where A = intensity of enriched carbon and B = intensity of natural abundance carbon (see **Supporting Methods**).

Figure S18. ¹H NMR (500 MHz, D₂O) spectrum of the synthetic *trans*-2-pentenyl-CoA (11). See **Supporting Methods** for the detailed synthesis. "X" indicates the presence of impurities.

Figure S19. HPLC-ESI-MS/MS analysis of CoA-esters obtained from *in vitro* reactions using recombinant TcsC and TcsD. (a) Chromatograms of TcsC-catalyzed production of ethylmalonyl-CoA (7) and propylmalonyl-CoA (8), supplemented with crotonyl-CoA (10) and *trans*-2-pentenyl-CoA (11), respectively. No product was detected when TcsD was incubated with 11 (upper chromatogram). Tracing of CoA-esters was done in multiple reactions monitoring mode by selecting mass transit from the protonated molecular ion to the specific fragmented product ion: 882 > 375 for 7; 896 > 389 for 8; 836 > 329 for 10; and 850 > 343 for 11, as previously described⁹. (b) ESI-MS/MS fragmentation pattern of 7 and its MS/MS spectra obtained from the TcsC reactions with 10. (c) ESI-MS/MS fragmentation pattern of 8 and its MS/MS spectra obtained from the reactions of TcsC with 11.

Figure S20. HPLC-ESI-MS/MS analysis of intracellular CoA-esters obtained from 3-day cultures of wild-type FK506-producing *Streptomyces* sp. KCTC 11604BP and FK520-producing *S. hygroscopicus* var. *ascomyceticus* ATCC 14891 strains. (a) Chromatograms of intracellular CoA-esters extracted from both strains and the authentic synthesized allylmalonyl-CoA (9). Tracing of CoA-esters was done in multiple reactions monitoring mode by selecting mass transit from the protonated molecular ion to the specific fragmented product ion: 868 > 361 for methylmalonyl-CoA (6); 882 > 375 for ethylmalonyl-CoA (7); 896 > 389 for propylmalonyl-CoA (8); and 836 > 329 for 9, as previously described⁹. (b) ESI-MS/MS fragmentation pattern of 9 and its MS/MS spectra obtained from KCTC 11604BP.

Figure S21. ¹H NMR (500 MHz, D₂O) spectrum of the synthetic allylmalonyl-CoA (9). See **Supporting Methods** for the detailed synthesis.

Figure S22. ESI-MS/MS analysis of 36,37-dihydro-37-methyl-FK506 (23) obtained from the *tcsB* deletion mutant of *Streptomyces* sp. KCTC 11604BP (Δ tcsB strain) supplemented with *trans*-2-hexenoic acid (20). (a) ESI-MS/MS fragmentation pattern of 23. (b) MS/MS spectra of 23. Structural estimation of FK506 congeners produced by the same strain was carried out as previously described¹⁰.

Figure S23. ESI-MS/MS analysis of a novel FK506 analog, 36-methyl-FK506 (24) obtained from the *tcsB* deletion mutant of *Streptomyces* sp. KCTC 11604BP (Δ tcsB strain) supplemented with 4methylpentanoic acid (21). (a) ESI-MS/MS fragmentation pattern of 24. (b) MS/MS spectra of 24. Structural estimation of FK506 congeners produced by the same strain was carried out as previously described¹⁰.

Figure S24. ¹H NMR (900 MHz, CDCl₃) spectrum of 36-methyl-FK506 (24). "*" indicates the coexistence of tautomer.

Figure S25. ¹³C NMR (225 MHz, CDCl₃) spectrum of 36-methyl-FK506 (24). "*" indicates the coexistence of tautomer.

Figure S26. 2D ¹H-¹H COSY NMR spectrum of 36-methyl-FK506 (24).

Figure S27. 2D HMQC NMR spectrum of 36-methyl-FK506 (24).

Figure S28. 2D HMBC NMR spectrum of 36-methyl-FK506 (24).

Position	С	Н	COSY correlations	HMBC correlations
1	169.08	-		
2	56.62	4.61	H-3b	C-1, 3, 4
3	27.56	2.08	H-3b	
		1.94	H-4b	
4	21.06	1.75	H-4b	C-3, 6
		1.39		
5	24.47	1.75	H-5b	C-3, 6
		1.47	H-4b	
6	39.30	4.43	H-5a/b, H-6b	C-2, 4, 5, 8
		3.03	H-5a/b	C-2, 8
7	-	-		
8	164.70	-		
9	196.14	-		
10	97.19	-		
11	34.60	2.19	H-12b, 38	
12	32.68	2.14		C-13
		1.47		C-11, 13
13	73.57	3.40	H-12a/b	
14	72.85	3.68	H-13, 15	C-10, 12, 13, 15
15	75.21	3.58	H-16a/b	
16	33.15	1.53	H-16b	
		1.07		
17	26.00	1.68	H-16a/b, 39	C-19
18	48.66	2.14	H-17, 18b	C-16, 17, 19, 20, 39, 40
		1.80		C-16, 17, 19, 20, 39, 40
19	138.82	-		
20	122.86	5.02	H-21	C-18, 21, 35, 40
21	51.61	3.55	H-35a/b	C-19, 20, 22, 35, 36

Table S9. NMR data for the novel FK506 analog 36-methyl-FK506 (24)

22	212.42	-		
23	43.69	2.78	H-23b	C-22, 24, 25
		2.16		C-21, 22
24	69.89	3.95	H-23a/b, 25	C-26
25	39.77	1.89	H-41	C-24, 41
26	77.68	5.33	H-25	C-24, 25, 27, 28, 41, 42
27	132.19	-		
28	129.90	5.10	H-29	C-26, 29, 30, 34, 42
29	34.89	2.31	H-30b, 34a	
30	34.82	2.02		C-28, 31
		0.96		C-28, 29, 31, 32, 34
31	84.17	3.02	H-30a/b	C-32, 45
32	73.69	3.42	H-31, 33b	C-31, 33
33	31.20	2.02	H-33b, 34a	
		1.37	H-34b	C-32
34	30.63	1.64		C-28, 29, 30
		1.08		
35	38.98	2.50		C-36methyl, 20, 21, 22, 36, 37
		2.09		C-36methyl, 20, 21, 22, 36, 37
36	143.00	-		
37	112.06	4.76		C-36
		4.66		
38	16.24	1.00		C-10, 12
39	20.37	0.93		C-16, 17, 18
40	15.94	1.61		C-18, 19, 20
41	9.45	0.88		C-24, 25, 26
42	14.13	1.64	C-26, 27, 28	
43	56.31	3.42		C-13
44	57.06	3.31		C-15
45	56.58	3.42		C-31
36-methyl	22.77	1.72		C-36

Figure S29. ESI-MS/MS analysis of a novel FK506 analog, 36-fluoro-FK520 (**25**) obtained from the *tcsB* deletion mutant of *Streptomyces* sp. KCTC 11604BP (Δ tcsB strain) supplemented with 4-fluorocrotonic acid (**22**). (**a**) ESI-MS/MS fragmentation pattern of **25**. (**b**) MS/MS spectra of **25**. Structural estimation of FK506 congeners produced by the same strain was carried out as previously described¹⁰.

Figure S30. ¹H NMR (900 MHz, CDCl₃) spectrum of 36-fluoro-FK520 (**25**). "*" indicates the coexistence of tautomer.

Figure S31. ¹³C NMR (225 MHz, CDCl₃) spectrum of 36-fluoro-FK520 (25).

Figure S32. 2D ¹H-¹H COSY NMR spectrum of 36-fluoro-FK520 (25).

Figure S33. 2D HMQC NMR spectrum of 36-fluoro-FK520 (25).

Figure S34. 2D HMBC NMR spectrum of 36-fluoro-FK520 (25).

Position	С	Н	COSY correlations	HMBC correlations
1	168.84	-	-	
2	56.61	4.65	H-3a/b	C-1, 3, 4, 6, 8
3	27.71	2.09	H-2, 3b, 4a	
		1.98	H-2, 4a/b	C-1, 2
4	21.15	1.75	H-3a, 4b, 5b	C-2, 3, 6
		1.40	H-3a/b, 4a, 5a/b	
5	24.55	1.75	H-4b, 5b, 6a/b	C-3, 6
		1.47	H-4a, 5a, 6a/b	
6	39.29	4.45	H-5a/b	C-2, 8, 4, 5
		3.02	H-5a/b	C-2, 8
7	-	-		
8	164.45	-		
9	195.88	-		
10	97.04	-		
11	34.63	2.16	H-12b	C-10
12	32.60	2.16	C-13	
		1.50		C-11, 13
13	73.55	3.41	H-12a/b	
14	72.65	3.75	H-13, 15	C-10, 12, 13, 15
15	75.12	3.62	H-16a/b	C-16
16	33.02	1.63	H-16b	C-14
		1.10		C-14, 15, 17
17	25.98	1.79		C-16, 19, 38
18	48.23	2.16	H-17	C-17,19
		1.81		C-16, 17, 19, 20, 39, 38
19	139.77	-		
20	121.23	5.10	H-21	C-18, 21, 22, 35, 39
21	48.40	3.58	Н-20, 35	C-19, 20, 22, 35, 36

Table S10. NMR data for the novel FK506 analog 36-fluoro-FK520 (25)

 22	212.91	-				
23	43.02	2.86	H-23b, 24	C-22, 24, 25		
		2.08	H-23a, 24	C-22, 24		
24	70.19	3.91	H-23a/b, 25	C-26		
25	39.94	1.90	H-24, 26	C-24, 40		
26	76.67	5.34	H-25	C-24, 25, 27, 28, 40, 41		
27	132.44	-				
28	129.48	5.10	H-29	C-26, 27, 29, 30, 34, 41		
 29	34.87	2.29	H-30a/b, 34a/b			
30	34.84	2.04	H-29, 31			
		0.97	H-29, 30a, 31	C-28, 29, 31, 32, 34		
31	84.15	3.02	H-30a/b, 32	C-32, 44		
32	73.51	3.41	H-31, 33a/b	C-31		
33	31.18	2.00	H-32, 33b, 34a			
		1.38	H-32, 33a, 34a/b	C-29, 32, 34		
34	30.62	1.64	H-29, 33a/b, 34b	C-28, 29, 30		
		1.06	H-29, 33a/b			
 35	31.05	2.25	H-36	C-20, 21, 22, 36		
36	81.57	4.42	H-35	C-21		
 37	16.28	1.01	H-11	C-10, 11, 12		
38	20.45	0.95	H-17	C-16, 17, 18		
39	15.95	1.60		C-18, 19, 20		
40	9.56	0.87	H-25	C-24, 25, 26		
41	14.20	1.65		C-26, 27, 28		
42	56.27	3.40		C-13		
43	56.61	3.32		C-15		
44	56.60	3.42		C-31		

Figure S36. Snapshots of the average structure of the binding sites in 3-dimensional docking models. (a) Calcineurin A (CnA)-Calcineurin B (CnB)-FK506 (1), (b) CnA-CnB-FK520 (2), (c) CnA-CnB-36-methyl-FK506 (24), and (d) CnA-CnB-36-fluoro-FK520 (25) during 10-ns molecular dynamics simulation. The average distances between the oxygen atom of Ser353 in CnA and C-37 of 1 (purple dash) and 24 (green dash) in the simulated complex were 2.983 and 2.784 Å, respectively. The side chains of 1 and its analogs are shown in dark slate blue and the fluorine atom in 25 is shown in cyan. The dotted circles represent the orientation of Ser353 in CnA.

Compound	ΔG_{elec}	ΔG_{vdw}	$\Delta G_{nonpol, sol}$	$\Delta G_{elec,sol}$	-ΤΔS	ΔG_{bind}
1	-11.83±0.12	-25.08±0.09	-2.93±0.01	21.53±0.09	12.61±0.41	-6.42±0.05
2	-14.36±0.13	-23.53±0.10	-3.03±0.01	23.13±0.06	11.76±0.56	-6.03±0.05
24	-12.20±0.12	-25.45±0.09	-2.90±0.01	20.40±0.08	12.37±0.54	-7.78±0.04
25	-11.75±0.07	-24.78±0.09	-3.05±0.01	21.45±0.08	12.31±0.56	-5.82±0.09

Table S11. Binding free energies of calcineurin-FKBP12 complex with 1 and its analog

1: FK506, 2: FK520, 24: 36-methyl-FK506, 25: 36-fluoro-FK520. The binding free energies were based on molecular dynamics simulation. All energies are given in units of kcal/mol. ΔG_{elec} , ΔG_{vdw} , $\Delta G_{nonp/sol}$, $\Delta G_{elec/sol}$, ΔG_{bind} represent electrostatic, van der Waals, nonpolar solvation, electrostatic solvation, and binding free energies, respectively. The uncertainties are the standard error of the mean calculated with 200 snapshots (50 snapshots for entropic calculations).

Figure S37. Representative micrographs of SH-SY5Y neuroblastoma cells. Untreated cells (**a**), cells treated with NGF alone (**b**), and cells treated with NGF in the presence of **1** (**c**), **2** (**d**), **24** (**e**) and **25** (**f**) at a concentration of 1 nM after 96 h of cultivation. Neurite processes are longer in treated cells, with the exception of those treated with **2** (**d**), compared with those treated with NGF alone (**b**) (see **Supporting Methods**).

h

mmNidAllI AT4

a 41	mmNidAllI_AT4 b				
29	mmPimSII_AT7	Signature motif	I	Ш	ш
	mmNysB_AT2	FEDR AT4 KCTC 11604BP	RVDVVH	CHSOCE	Сртн
40 23	mmRifB_AT4	FbkB AT4 KCTC 9225	RVDVVH	GHSOGE	СРТН
	mmRapB_AT6	emFkbB AT4	RVDVVH	GHSOGE	CPTH
12 67	mmFkbC AT5	emNidAIII AT5	RVDVVO	GHSOGE	TAGH
	100 mmGdmAl AT1	emTvlG AT5	RVDVVO	GHSOGE	TAGH
	mmHdmAl_AT1	mAveAI AT2	OTRYAO	GHSLGE	HAFH
99	moGdmAll AT5	mEpoA ATO	QTAFTQ	GHSIGE	HAFH
24	100 moHdmAll AT5	mFkbA_AT10	DTLYAQ	GHSVGE	HAFH
49	mmSorB AT5	mGdmAIII_AT6	RTEFTQ	GHSIGE	HAFH
16	moSorA AT3	mHbmAIII_AT6	RTEFTQ	GHSIGE	HAFH
	mmAveAll AT6	mNidAI_AT1	RTEYTQ	GHSVGE	HAFH
45 9	moNidAlV_AT6	mNysC_AT3	DTGWAQ	GHSIGE	HAFH
	emNidAllI AT5	mPimSI_AT3	QTAYAQ	GHSIGE	HAFH
100	emTvIG AT5	mRapA_AT2	ETGYAQ	GHSVGE	HAFH
81	emEkbB AT4	mRifA_AT2	QTMYTQ	GHSIGE	HAFH
		mSorA_AT2	QTAFTQ	GHSIGE	HAFH
		mmAveAII_AT6	QADVVQ	GHSQGE	YASH
39		mmEryAI_AT1	RVEVVQ	GHSIGE	МААН
98	mmEpoo_AT4	mmEpoC_AT1	RIDVVQ	GHSMGE	VASH
		mmFkbC_AT5	RVEVVQ	GHSQGE	YASH
		mmGdmAI_AT1	RVDVVQ	GHSQGE	YASH
		mmHdmAI_AT1	RVDVVQ	GHSQGE	YASH
96		mmNidAIII_AT4	RVDVVQ	GHSQGE	YASH
57	mNidAL AT1	mmNysB_AT2	RVDVVQ	GHSQGE	YASH
64	mBar A AT2	mmPimSII_AT7	RVDVVQ	GHSQGE	YASH
46		mmRapB_AT6	RVDVVQ	GHSQGE	YASH
64		mmRifB_AT4	RVDVVQ	GHSQGE	YASH
		mmSorB_AT5	RVDVVQ	GHSQGE	YASH
83 1		mmStiD_AT4	RVEVVQ	GHSMGE	VASH
	mSorA_A12	moFkbA_AT7	THFAHQ	GHSLGE	HAGE
83		moGdmAII_AT5	RVDVLQ	GHSQGE	FAGH
34	mNysC_AI3	moHbmAII_AT5	RVDVLQ	GHSQGE	FAGH
90	mPimSI_AT3	moNidAIV_AT6	RADVVQ	GHSQGE	FAGH
	dmFenF	moSorA_AT3	RIEVVQ	GHSQGE	VASH
100	dmPedD	dmDszD	QTQFTQ	GHSLGE	AAFH
99	dmMmpIII_AT2	dmFenF	RTMNAQ	GHSLGE	APFH
76	dmDszD	dmLnmG	RTEYAQ	GHSLGE	AAFH
56	dmLnmG	dmMmpIII_AT2	QTRFTQ	GHSLGE	APFH
	+	dmPedD	LTQYTQ	GHSLGE	GAHF
0.6 0.5 0.4 0.3 0.2	0.1 0.				

Figure S38. Phylogenetic analysis of module4 AT domains and their signature motifs. (a) Phylogenetic tree of the acyl transferase (AT) domains obtained by comparing the amino acid sequence of each module 4 AT domain derived from two 1-producing strains with those in the NCBI nr protein database. (b) Module4 AT domain signature motifs. Three dominant motifs, containing of 6, 6, and 4 amino acid residues, are assigned with a group of ATs. Color codes used in this figure are: purple, ethylmalonyl (em)-specific AT domain; blue, malonyl (m)-specific AT domain; green, methylmalonyl (mm)-specific AT domain; orange, methoxylmalonyl (mo)-specific AT domain; and yellow, discrete malonyl (dm)-specific AT domain.

Supporting Methods

Materials, bacterial strains, and culture conditions. FK506 (1), FK520 (2), ethylmalonyl-CoA (7), propylmalonyl-CoA (8), crotonyl-CoA (10), [1-¹³C]pentanoic acid (19), trans-2-hexenoic acid (20), 4methylpentanoic acid (21), trans-2-pentenoic acid, diethyl propylmalonic acid, nicotinamide adenine dinucleotide phosphate (NADPH), ampicillin, apramycin, chloramphenicol, kanamycin, and nalidixic acid were purchased from Sigma. Ammonium acetate and allylmalonic acid were purchased from Fluka, and HPLC-grade acetonitrile, methanol, glacial acetic acid, and water were supplied by J.T. Baker. 4-Fluorocrotonic acid (22) was chemically synthesized as previously described¹¹. A Copy Control Fosmid construction kit was purchased from Epicentre Biotechnologies. His-Bind nickel chelate chromatography resin was obtained from Novagen. Restriction endonucleases and T4 DNA ligase were purchased from New England Biolabs. Polymerase chain reactions were carried out using Taq DNA polymerase from Stratagene. All other chemicals were of the highest purity available. For NMR characterization of FK506 congeners and their analogs obtained from the culture media, samples purified via reversed-phase HPLC were prepared by dissolving each compound in 250 μ l of CDCl₃ (Sigma) and placing the solution in a 5mm Shigemi advanced NMR microtube (Sigma) matched to the solvent. ¹H, ¹³C, ¹⁹F, and 2D NMR spectra were acquired using a Bruker 9503DPX, Bruker DRX 300, Varian INOVA 500 and Bruker Avance II 900 spectrometer at 298K. Chemical shifts are given in ppm using tetramethylsilane (TMS) as an internal reference. All NMR data processing was done using the Mnova (Mestrelab Research S.L.) software.

Bacterial strains used in this study are listed in **Table S7**. The **1**-producing strains *Streptomyces* sp. KCTC 11604BP and *Streptomyces kanamyceticus* KCTC 9225 were obtained from GenoTech (Daejeon, Republic of Korea) and the Korean Collection for Type Cultures (Republic of Korea), respectively. The **2**-producing *Streptomyces hygroscopicus* var. *ascomyceticus* ATCC 14891 and **1**-producing *Streptomyces* sp. ATCC 55098 were obtained from the American Type Culture Collection (USA). Spores of *Streptomyces* sp. KCTC 11604BP, its gene deletion mutants, and *S. kanamyceticus*

S67

KCTC 9225 were generated on ISP4 agar plates¹² and a seed culture was prepared in R2YE broth¹³. Fifty miligrams of vegetative cells grown in the seed culture were inoculated into a 250-ml baffled flask containing 50 ml of R2YE medium and cultivated on an orbital shaker (set at 180 rpm) for 6 d at 28 °C. *S. hygroscopicus* var. *ascomyceticus* ATCC 14891 was incubated in a baffled 250-ml flask containing 50 ml of SY medium¹⁴ and grown on an orbital shaker for 6 d at 30 °C. *Streptomyces lividans* TK24, which was used as a heterologous host for preparing recombinant TcsD, was grown in YEME liquid medium¹³. *Escherichia coli* DH5 α ¹⁵ was used for routine subcloning, while *E. coli* BL21(DE3) and *E. coli* BL21(DE3)pLysS (Novagen) were used as heterologous hosts for expression of recombinant TcsC and ACP_{tcsA}. *E. coli* ET12567/pUZ8002 was the nonmethylating plasmid donor strain¹ for intergeneric conjugation with *Streptomyces* sp. KCTC 11604BP. The *E. coli* strains were grown in LB, SOB or SOC liquid medium¹⁵. Ampicillin (100 µg/ml), apramycin (50 µg/ml), chloramphenicol (25 µg/ml), kanamycin (50 µg/ml), thiostrepton (25 µg/ml), and nalidixic acid (25 µg/ml) were selectively added to the growth media as required.

Identification and sequencing of the FK506 gene cluster. The genomic DNAs of *Streptomyces* sp. KCTC 11604BP, *S. kanamyceticus* KCTC 9225, and *Streptomyces* sp. ACTC 55098 were isolated using standard procedures¹³ and size-fractionated through an agarose gel by pulsed field gel electrophoresis. Fragments approximately 40 kb in size were excised, recovered from the gel, and then cloned into the pCCFOS1 fosmid vector using the Copy Control Fosmid construction kit according to the manufacturer's protocols. The fosmid library was screened by end sequencing with pCC1/pEpiFOS forward and reverse primers, then the sequences of selected fosmids were determined by PCR analysis using FK506-specific primers. The PCR primer pairs (FkbDF/FkbDR and FkbOF/FkbOR) were designed based on the conserved sequences found in *Streptomyces* sp. ATCC 53770 (GenBank accession no. U65940.1) and *S. hygroscopicus* var. *ascomyceticus* ATCC 14891 (GenBank accession no. AF235504.1) (see **Table S3**). The PCR products were analyzed on an ABI PRISM 3700 automated sequencer (Applied Biosystems). The raw sequence data were processed and assembled with Management and Analysis for

S68

Polyketide Synthase Type I (MAPSI) software¹⁶. Annotation analysis of the sequence data was performed through database comparison with the Basic Local Alignment Search Tool (BLAST) server of the National Center for Biotechnology Information (NCBI)¹⁷.

Chemical synthesis of 3-oxopentanoyl-SNAC thioester (13). Pyridine (4.88 ml, 60 mmol) was added to a solution of Meldrum's acid (**13a**; 4.33 g, 30 mmol) in dichloromethane (MC; 30 ml) at 0 °C. A solution of propionyl chloride (CH₃CH₂COCl; 2.78 g, 30 mmol) in MC (30 ml) was then added dropwise to this solution. The reaction mixture was stirred at 0 °C for 1 h and warmed to room temperature, then stirred for 20 h. The reaction mixture was washed with 2 N HCl (3×40 ml), dried over MgSO₄ and concentrated *in vacuo* to give 2,2-dimethyl-5-propionyl-1,3-dioxane-4,6-dione (**13b**; 5.53 g, 92%) as a red solid. ¹H NMR (250 MHz, CDCl₃): δ 5.36 (s, 1H), 3.12 (q, *J* = 7.5 Hz, 2H), 1.74 (s, 6H), 1.26 (t, *J* = 7.5 Hz, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 198.6, 170.5, 159.9, 104.6, 90.8, 53.5, 29.3, 26.5, 9.5.

A solution of *N*-acetylcysteamine (HSNAC; 0.4 g, 3.33 mmol) in benzene (C₆H₆; 7 ml) was added to a stirred solution of **13b** (1.0 g, 5 mmol) in C₆H₆ (27.8 ml). The reaction mixture was heated to reflux under a nitrogen atmosphere for 7 h. After evaporation of the solvent, the residue was purified by chromatography to give the product 3-oxopentanoyl-SNAC thioester (**13**) as a yellow crystalline solid (0.47 g, 64%). ¹H NMR (250 MHz, CDCl₃): δ 3.72 (s, 2H), 3.49-3.44 (m, 2H), 3.12-3.07 (m, 2H), 2.69-2.57 (m, 2H), 1.99 (s, 3H), 1.07 (t, 3H). ¹³C NMR (62.5 MHz, CDCl₃): δ 202.82, 192.36, 170.70, 56.90, 39.07, 36.70, 29.10, 23.09, 7.45 (see **Figures S7,S8**). Overall synthetic schemes for **13** are illustrated below.

Chemical synthesis of trans-2-pentenyl-SNAC thioester (14). To an oven-dried, nitrogen-purged 100-

ml round bottom flask equipped with a stir bar was added *trans*-2-pentenoic acid (0.79 g, 7.92 mmol) and 50 ml of MC. After cooling to 0 °C, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide·HCl (EDCl; 1.66 g, 8.71 mmol) and 4-(*N*,*N*-dimethylamino)pyridine (DMAP; 50.2 mg, 0.42 mmol) were added to the mixture. After stirring at 0 °C for 15 min, HSNAC (0.94 g, 7.92 mmol) was added, and the mixture was allowed to warm to room temperature and was stirred for 4 h. After concentration *in vacuo*, the residue was dissolved in 50 ml of chloroform, washed successively with 0.01 N HCl (3 x 20 ml) and saturated aqueous NaCl, then dried over MgSO₄. After concentration *in vacuo*, the clear oil residue was purified by silica gel chromatography eluted with ethyl acetate:hexane (6:4) to yield 1.3 g of **14** (6.47 mmol, 82%). ¹H NMR (250 MHz, CDCl₃): δ 7.04-6.93 (m, 1H), 6.12 (d, 1H), 3.45 (q, 2H), 3.09 (t, 2H), 2.31-2.20 (m, 2H), 1.98 (s, 3H), 1.09 (t, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 190.42, 170.50, 147.88, 127.40, 39.70, 28.15, 25.30, 23.14, 11.98 (see **Figures S9,S10**). The synthetic scheme for **14** is illustrated below.

Chemical synthesis of pentanoyl-SNAC thioester (15). To a 50-ml two-necked round-bottom flask containing diethyl propylmalonic acid (2.0 g, 10.0 mmol) and ethanol (EtOH, 5.0 ml) was added aqueous NaOH solution (6 M, 5.0 ml). The reaction was refluxed for 6 h, then neutralized with concentrated HCl (6 M, 8.25 ml). The organic phase was extracted with diethyl ether and washed with water and brine. The combined organic phase was dried over MgSO₄ and the volatile fraction was evaporated to afford propylmalonic acid as a white solid (1.26 g, 87%), which was used directly for the next step. ¹H NMR (250 MHz, (CD₃)₂CO): δ 3.37 (t, 1H), 1.89-1.80 (m, 2H), 1.45-1.39 (m, 2H), 0.94 (t, 3H); ¹³C NMR (62.5 MHz, (CD₃)₂CO): δ 171.01, 52.32, 31.55, 21.17, 14.03.

Propylmalonic acid (0.73 g, 5.0 mmol) was dissolved in dimethylformamide (DMF, 50 ml) at 0 °C, treated with diphenylphosphoryl azide ($Ph_2P(O)_3N_3$; 1.63 ml, 7.5 mmol) and triethylamine (Et₃N; 1.39 ml, 10.0 mmol), then stirred for 2 h. HSNAC (0.54 ml, 5.0 mmol) was added and the mixture was

stirred at room temperature for an additional 3 h. The reaction was quenched by adding water (100 ml) and then extracted twice with ethyl acetate. The organic layer was evaporated, dried with anhydrous MgSO₄, and purified by silica gel chromatography eluted with MC: methanol (20:1) to give **15** (0.87 g, 85%) as a colorless oil. ¹H NMR (250 MHz, CDCl₃): δ 3.42 (q, 2H), 3.03 (t, 2H), 2.58 (t, 2H), 1.98 (s, 3H), 1.71-1.59 (m, 2H), 1.40-1.31 (m, 2H), 0.92 (t, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 200.11, 170.43, 43.78, 39.61, 28.32, 27.64, 23.11, 22.02, 13.66 (see **Figures S11,S12**). The overall synthetic schemes for **15** are illustrated below.

Chemical synthesis of allylmalonyl-SNAC thioester (16). Allylmalonic acid (0.2 g, 1.38 mmol) was dissolved in dry tetrahydrofuran (THF; 0.84 ml). To this solution, pyridine (0.24 ml) and *tert*-butanol (0.24 ml, 2.51 mmol) were added with stirring. The mixture was cooled to 0 °C, and methanesulfonyl chloride (0.11 ml, 1.42 mmol) was added over 10 min. The mixture was stirred at room temperature for 3 h and then filtered to remove the pyridine hydrochloride salt. The filtrate was diluted in water (10 ml). This solution was brought to pH ~11 using 4 N NaOH, then washed with MC (3 x 5 ml). The aqueous layer was acidified to pH~3 with concentrated HCl and extracted with MC (4 x 5 ml). Evaporation of MC afforded **16a** as a colorless oil (0.2 g, 71%). ¹H NMR (250 MHz, CDCl₃): δ 11.52 (s, 1H), 5.85-5.74 (m, 1H), 5.18-5.01 (m, 2H), 3.39 (t, *J* = 7.4 Hz, 1H), 2.63 (t, *J* = 7.1 Hz, 2H), 1.47 (s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 176.0, 171.0, 136.3, 114.1, 72.3, 51.0, 28.0, 27.1.

To an oven-dried, nitrogen-purged 15-ml round-bottom flask equipped with a stir bar was added **16a** (0.15 g, 0.75 mmol) and 5 ml of MC. After cooling to 0 °C, EDCl (0.16 g, 0.82 mmol) and DMAP (4.75 mg, 0.04 mmol) were added successively to the mixture. The reaction mixture was stirred at 0 °C for 15 min and then HSNAC (0.12 ml, 1.12 mmol) was added. The reaction mixture was stirred overnight at room temperature, then concentrated *in vacuo*. The residue was dissolved in 25 ml of chloroform, washed

with 0.01 N HCl (3 x 10 ml) and then brine, then dried over MgSO₄. Concentration *in vacuo* gave a clear oil, which was purified by silica gel chromatography eluted with ethyl acetate:hexane (6:4), to yield **16b** (0.19 g, 0.63 mmol, 84%). ¹H NMR (250 MHz, CDCl₃): δ 5.97 (s, 1H), 5.83-5.16 (m, 1H), 5.16-5.05 (m, 2H), 3.58 (t, *J* = 7.5 Hz, 1H), 3.49-3.40 (m, 2H), 3.11-3.05 (m, 2H), 2.66-2.60 (m, 2H), 1.97 (s, 3H), 1.46 (s, 9H); ¹³C NMR (62.5 MHz, CDCl₃): δ 195.3, 170.4, 167.2, 133.7, 117.7, 82.5, 60.3, 39.4, 33.3, 28.7, 27.8, 23.1.

A solution of **16b** (0.9 g, 3.0 mmol) in trifluoroacetic acid (TFA; 25 ml) was stirred for 12 h at 0 °C. The TFA was removed *in vacuo*, and the residue was repeatedly dissolved in benzene and concentrated *in vacuo* to afford 0.67 g of **16** (2.72 mmol, 91%). ¹H NMR (250 MHz, CDCl₃): δ 5.89-5.62 (m, 1H), 5.16-5.02 (m, 2H), 3.73 (t, 2H), 3.39-3.34 (m, 1H), 3.10-3.04 (m, 2H), 2.68-2.32 (m, 2H), 1.94 (s, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 195.46, 172.23, 168.36, 133.05, 118.30, 59.34, 39.92, 38.64, 33.18, 21.99 (see **Figures S13,S14**). The overall synthetic schemes for **16** are illustrated below.

Chemical synthesis of propylmalonyl-SNAC thioester (17). Propylmalonic acid (0.2 g, 1.37 mmol) was dissolved in dry THF (0.84 ml). Pyridine (0.24 ml) and *tert*-butanol (0.24 ml, 2.51mmol) were added with stirring. After cooling to 0 °C, methanesulfonyl chloride (0.11 ml, 1.42 mmol) was added over 10 min. The mixture was stirred at room temperature for 3 h and then filtered to remove the pyridine hydrochloride salt. The filtrate was diluted in water (10 ml). This solution was brought to pH ~11 using 4 N NaOH and then washed with MC (3 x 5 ml). The aqueous layer was acidified to pH ~3 with concentrated HCl and
extracted with MC (4 x 5 ml). Evaporation of the solvent afforded **17a** as a colorless oil (0.19 g, 70%). ¹H NMR (250 MHz, CDCl₃): δ 11.51 (s, 1H), 3.30 (t, *J* = 7.5 Hz, 1H), 1.91-1.82 (m, 2H), 1.47 (s, 9H), 1.45-1.33 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 177.0, 172.0, 73.2, 52.0, 29.0, 27.1, 19.7, 13.7.

To a solution of **17a** (0.15 g, 0.75 mmol) in MC (5 ml) were successively added EDCl (0.16 g, 0.82 mmol) and DMAP (4.75 mg, 0.04 mmol). The mixture was stirred at 0 °C for 15 min and then HSNAC (0.12 ml, 1.12 mmol) was added. The reaction mixture was stirred overnight at room temperature, then concentrated *in vacuo*. The residue was dissolved in 20 ml of chloroform and washed successively with 0.01 N HCl (3 x 10 ml) and brine, then dried over MgSO₄. After concentration *in vacuo*, the clear oil residue was purified by silica gel chromatography eluted with ethyl acetate:hexane (6:4) to yield **17b** (0.2 g, 0.64 mmol, 87%). ¹H NMR (250 MHz, CDCl₃): δ 6.23 (s, 1H), 3.53-3.42 (m, 3H), 3.11-3.04 (m, 2H), 1.97 (s, 3H), 1.88-1.84 (m, 2H), 1.46 (s, 9H), 1.39-1.30 (m, 2H), 0.93 (t, *J* = 7.3 Hz, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 196.0, 170.5, 167.9, 82.2, 60.8, 39.4, 31.4, 28.6, 27.8, 23.1, 20.4, 13.7.

In an oven-dried, nitrogen-purged 50-ml round-bottom flask equipped with a stir bar, compound **17b** (0.91 g, 3.0 mmol) was cooled to 0 °C, then 25 ml of TFA was added and the mixture was stirred for 24 h at 0 °C. After evaporation of TFA *in vacuo*, the residue was repeatedly dissolved in benzene and concentrated *in vacuo* to afford 0.67 g of **17** (2.70 mmol, 90%). ¹H NMR (250 MHz, CDCl₃): δ 3.63 (t, 2H), 3.46-3.43 (m, 1H), 3.20-2.98 (m, 2H), 2.00 (s, 3H), 1.94-1.85 (m, 2H), 1.40-1.31 (m, 2H), 0.93 (t, 3H); ¹³C NMR (62.5 MHz, CDCl₃): δ 196.57, 172.86, 171.86, 59.73, 39.48, 31.55, 28.44, 22.45, 20.46, 13.65 (see **Figures S15,S16**). The overall synthetic schemes for **17** are illustrated below.

Chemical synthesis of allylmalonyl-CoA (9). To a solution of allylmalonic acid (0.5 g, 3.47 mmol) and thiophenol (0.35 ml, 3.42 mmol) in DMF (35 ml), a solution of dicyclohexylcarbodiimide (DCC, 0.87 g, 0.61 mmol) in dimethylformamide (50 ml) was added over 2 h at 0 °C. Stirring was continued for an additional 3 h at 0 °C, then the reaction was quenched by adding 10 ml of water. The precipitated dicyclohexyl urea was filtered, and the filtrate was acidified with 1 N HCl to pH 2.5. The monothiophenyl ester present in the filtrate was extracted with ether (4 × 100 ml). The combined organic extracts were washed with 0.1 N HCl and then concentrated *in vacuo* until the volume of the solution was ~50 ml. The monothiophenyl ester present in the ether was extracted with 0.2 N sodium bicarbonate (NaHCO₃). The aqueous phase was extracted with 50 ml of ether to remove traces of thiophenol and dithiophenyl ester. Then, the pH was adjusted with cold 1 N HCl to ~2. The monothiophenyl ester was extracted again with ether (2 × 100 ml). The combined organic extracts were washed with brine (50 ml) and dried over anhydrous sodium sulfate, then filtered and concentrated *in vacuo* to give **9a** (0.65 g) as a white solid (yield = 81%). ¹H NMR (250 MHz, CDCl₃): δ 10.01 (s, 1H), 7.45 (s, 5H), 5.87-5.79 (m, 1H), 5.26-5.15 (m, 2H), 3.84 (t, *J* = 7.5 Hz, 1H), 2.80-2.74 (m, 2H); ¹³C NMR (62.5 MHz, CDCl₃): δ 192.7, 173.6, 134.5, 133.1, 129.9, 129.4, 126.6, 118.5, 58.8, 33.4 ppm.

To 10 mg of CoA ester (CoA; 12 µmol) dissolved in 167 µl of 0.1M NaHCO₃ (pH 8.0) was added monothiophenyl ester **9a** (15.44 mg, 65.3µmol) in 100 µl of 0.1 M NaHCO₃ at 0 °C. The solution pH was

S74

adjusted by addition of a cold 0.2 N NaOH solution to ~8, then stirring was continued for 6 h at 0 °C. The reaction was quenched by acidification to pH 4 with 0.5 N HCl, then the mixture was extracted with ether $(4 \times 10 \text{ ml})$ to remove traces of monothiophenyl ester and thiophenol. The aqueous phase was extracted with ethyl acetate $(5 \times 10 \text{ ml})$ to remove the allylmalonic acid and then lyophilized to give 11.5 mg of allylmalonyl-CoA (**9**; yield = 98%). ¹H NMR (500 MHz, D₂O): δ 8.57 (s, 1H), 8.26 (s, 1H), 6.18 (d, 1H), 5.90-5.84 (m, 1H), 5.12 (d, 2H), 5.07-5.02 (m, 1H), 4.69-4.59 (m, 1H), 4.25 (s, 1H), 4.02 (s, 2H), 3.84-3.80 (m, 2H), 3.75-3.68 (m, 2H), 3.43-3.49 (m, 1H), 3.38-3.31 (m, 2H), 3.18 (t, 1H), 3.08-3.01 (m, 2H), 2.57 (t, 2H), 2.59-2.44 (m, 2H), 0.88 (s, 3H), 0.74 (s, 3H) (see Figure S21). The overall synthetic schemes for **9** are illustrated below.

Chemical synthesis of *trans-2-***pentenyl-CoA (11).** To a solution of *trans-2-*pentenoic acid (18.62 mg, 0.186 mmol, 6 equiv.) in anhydrous THF (8 ml), cooled to 0 °C and under nitrogen, was added Et₃N (26 μ l, 0.186 mmol, 6 equiv.) followed by ethyl chloroformate (18 μ l, 0.188 mmol, 6 equiv.), and the mixture was stirred at 0 °C for 45 min. The stirring was then stopped to allow the resulting solid to precipitate. The clear THF supernatant was added slowly to a solution of hydrated CoA (24 mg, 0.031 mmol, 1 equiv.) and NaHCO₃ (15 mg, 0.18 mmol) in double distilled water (3 ml). The reaction mixture was stirred at room temperature for 4 h after which the THF was removed under vacuum. The aqueous solution was acidified to pH 3 using 1 N HCl and then extracted with ethyl acetate (3 × 3 ml) to remove excess *trans-2-*pentenoic acid. The aqueous solution was then lyophilized and the resulting solid was washed with methanol to afford *trans-2-*pentenyl-CoA (**11**) as a white solid. ¹H NMR (500 MHz, D₂O): δ 8.79 (s, 1H), 8.68 (s, 1H), 7.20-7.13 (m, 1H), 6.42-6.35 (m, 1H), 6.30 (d, 1H), 5.11-5.01 (m, 1H), 4.65-4.60 (m, 1H), 4.42 (s, 1H), 4.16 (s, 1H), 4.04-3.98 (m, 2H), 3.79-3.73 (m, 2H), 3.68-3.47 (m, 1H), 3.32 (t,

2H), 3.19 (t, 2H), 2.49-2.33 (m, 2H), 1.99-1.93 (m, 2H), 1.38 (t, 3H), 1.07 (s, 3H), 0.96 (s, 3H) (see **Figure S18**). The synthetic scheme for **11** is illustrated below.

Construction of in-frame gene deletion plasmids. pGEM-T Easy Vector (Promega) and Litmus28 (New England Biolabs) were used for routine subcloning. E. coli-Streptomyces shuttle vector pKC1139⁶ was used for in-frame gene deletion. To delete nine tcs genes (tcsA, tcsB, tcsC, tcsD, tcs1, tcs2, tcs3, tcs4, and tcs5) and fkbA in Streptomyces sp. KCTC 11604BP, the construction of recombinant plasmids was carried out by PCR amplification of the left- and right-flanking fragments from fosmid (fos1004F01) DNA derived from Streptomyces sp. KCTC 11604BP. One gene was targeted in each reaction. The primer pairs TcsALF/TcsALR, TcsBLF/TcsBLR, TcsCLF/TcsCLR, TcsDLF/TcsDLR, Tcs1LF/Tcs1LR, Tcs2LF/Tcs2LR, Tcs3LF/Tcs3LR, Tcs4LF/Tcs4LR, Tcs5LR/Tcs5LF, and FkbALF/FkbALR were designed for the amplification of left-flanking fragments of target genes, whereas TcsARF/TcsARR, TcsBRF/TcsBRR, TcsCRF/TcsCRR, TcsDRF/TcsDRR, Tcs1RF/Tcs1RR, Tcs2RF/Tcs2RR, Tcs3RF/Tcs3RR, Tcs4RF/Tcs4RR, Tcs5RR/Tcs5RF, and FkbARF/FkbARR were for right-flanking fragments (Table S8). A total of 20 PCR fragments were separately cloned in pGEM-T Easy vector and sequenced. After digestion with appropriate restriction enzymes, the fragments were cloned into pKC1139 digested with *Hind*III-*Eco*RI or *Hind*III-*Xba*I, to construct 10 different in-frame deletion plasmids: pATCSA, pATCSB, pATCSC, pATCSD, pATCS1, pATCS2, pATCS3, pATCS4, pATCS5 and $p\Delta FKBA$ (Table S7).

Construction of protein expression plasmids. pET15b (Novagen) containing an N-terminal His₆-tag was used for the expression of recombinant ACP_{tcsA} and Sfp (PPTase), whereas N, C-terminal His₆-tagged

pET28a (Novagen) was used for TcsC. Amplification of *tcsC* was accomplished with the primers TcsCF and TcsCR. The PCR product was cloned into pET28a to generate pTCSC with an N, C-terminal His₆-tag (**Tables S7,S8**). Amplification of the DNA fragments containing ACP_{tcsA} domain in *tcsA* was accomplished with the primers TcsAF and TcsAR. The PCR product was cloned into pET15b to produce pTCSA-ACP with an N-terminal His₆-tag (**Tables S7,S8**). The gene *sfp* encoding 4'-phosphopantetheinyl transferase (PPTase) from *Bacillus subtilis* was amplified by PCR from pGF101⁷ using primers SfpF and SfpR. The PCR product was cloned into pET15b to generate pSFP with an N-terminal His₆-tag (**Tables S7, S8**). Amplication of *tcsD* was performed using primers TcsDF and TcsDR. The PCR product was cloned into pET15b to generate pTCSD1 with an N-terminal His₆-tag. This plasmid was digested with *XbaI* and *Hind*III and then cloned into pSE34, yielding pTCSD.

Gene deletion. The plasmids used for in-frame gene deletion are summarized in Table S7. They were introduced into *Streptomyces* sp. KCTC 11604BP by conjugation from ET12567/pUZ8002¹ and then target genes were deleted by homologous recombination. A strain in which a single crossover between deletion plasmid and the KCTC 11604BP chromosome had occurred was selected by cultivation of an apramycinresistant transconjugant at 37 °C (the non-permissive temperature for the pSG5-based replicon) in the presence of apramycin. One such colony was then subjected to three rounds of propagation in the absence of selection at 30 °C to allow for the second crossover. The ten desired double crossover mutants, Δ tcsA, Δ tcsB, Δ tcsC, Δ tcsD, Δ tcs1, Δ tcs2, Δ tcs3, Δ tcs4, Δ tcs5, and Δ fkbA, were selected by their apramycinsensitive phenotype, then verified by PCR and selectively confirmed by Southern blot analysis (see **Table S7**).

Chemical complementation of the four *tcs* deletion mutants with acyl-SNAC thioesters. Seed

cultures of the mutant strains were grown in R2YE medium for 2 d at 28 °C and then used as 50-mg (wet weight) inocula for 50-ml liquid cultures of the same medium as described above. 3-Oxopentanoyl- (13), *trans*-2-pentenyl- (14), pentanonyl- (15), allylmalonyl- (16), and propylmalonyl- (17) SNAC thioesters

were added to separate culture of mutants of *Streptomyces* sp. KCTC 11604BP (strains Δ tcsA, Δ tcsB, Δ tcsC, and Δ tcsD) at a final concentration of 10 mM on 3 d. The production cultures were grown for 5 d at 28 °C as described above. The culture broth was collected by vacuum filtration, and then extracted twice with an equal volume of ethyl acetate¹⁸. The organic extract was evaporated to dryness under reduced pressure and then dissolved in 0.2 ml methanol for HPLC–ESI–MS/MS analysis (**Figure 4**; see **Methods**). Independent experiments were carried out in triplicate.

Measurement of labeled precursor incorporation rate using [1-¹³C]pentanoic acid (19). Following the general feeding procedure as described above, $[1-^{13}C]19$ (1.03 g/l) was added to the *tcsB* in-frame deletion mutant (Δ tcsB strain). [8-¹³C, 20-¹³C, 22-¹³C] FK506 (1; 4.32 mg), [8-¹³C, 22-¹³C] FK520 (2; 1.91 mg), and [8-¹³C, 22-¹³C] FK523 (12; 1.54 mg) were purified via reversed-phase HPLC (Watchers C₁₈, 5 µm, 250 × 4.6 mm, flow rate 1.0 ml/min, detection at 205 nm, 50 °C) using an isocratic gradient of 60% (v/v) aqueous acetonitrile. 1, 2, and 12 were eluted at 27.5, 26.0, and 20.0 min, respectively (see Figure S17).

Production of FK506 analogs. The Δ tcsB mutant of *Streptomyces* sp. KCTC 11604BP was grown as described above. *Trans*-2-hexenoic acid (**20**), 4-methylpentanoic acid (**21**), and 4-fluorocrotonic acid (**22**) were supplemented as described above in 50-ml cultures at a final concentration of 10 mM.

36,37-Dihydro-37-methyl-FK506 (23). The broth (300 ml) to which 343 mg of **20** had been added was harvested, and the cell-free broth was extracted with ethyl acetate as described above. Evaporation of the ethyl acetate under reduced pressure left approximately 0.1 g of reddish foam. HPLC purification of this material gave a trace amount of **23**; HR-ESI-MS: m/z $[M+NH_4]^+$ 837.0682 (calculated for C₄₅H₇₃NO₁₂, 837.0606); fragmented product ions: 784.3 $[M+NH_4-3H_2O]^+$, 766.3 $[M+NH_4-4H_2O]^+$, 752.3 $[M+NH_4-4H_2O-CH_2]^+$, 734.3 $[M+NH_4-5H_2O-CH_2]^+$, 592.2, 574.3 $[592.2-H_2O]^+$, 564.3 $[592.2-C_2H_4]^+$, 548.2 $[592.2-H_2O-C_2H_2]^+$ (see **Figure S22** for ESI-MS/MS spectrum of **23**).

36-Methyl-FK506 (24). The broth (18.0 liters) to which 20.9 g of **21** had been added was harvested, and the cell-free broth was extracted with ethyl acetate as described above. Evaporation of the ethyl acetate under reduced pressure left approximately 1.5 g of reddish foam. HPLC purification of this material gave **24** (1.2 mg); HR-ESI-MS: m/z $[M+NH_4]^+$ 835.0499 (calculated for C₄₅H₇₁NO₁₂, 835.0447); fragmented product ions: 782.3 $[M+NH_4-3H_2O]^+$, 764.2 $[M+NH_4-4H_2O]^+$, 750.2 $[M+NH_4-4H_2O-CH_2]^+$, 732.2 $[M+NH_4-5H_2O-CH_2]^+$, 590.1, 572.2 $[590.2-H_2O]^+$, 562.3 $[590.2-C_2H_4]^+$, 546.3 $[590.2-H_2O-C_2H_2]^+$, 528.3 $[590.2-2H_2O-C_2H_2]^+$, 514.2 $[590.2-2H_2O-CH_2]^+$. The ESI-MS/MS and NMR spectra of **24** are illustrated in **Figures S23** to **S28** and **Table S9**.

36-Fluoro-FK520 (25). The broth (1.6 liters) to which 200 mg of **22** had been added was harvested, and the cell-free broth was extracted with ethyl acetate as described above. Evaporation of the ethyl acetate under reduced pressure left approximately 0.3 g of reddish foam. HPLC purification of this material gave **25** (0.7 mg); HR-ESI-MS: m/z $[M+NH_4]^+$ 827.0050 (calculated for C₄₃H₆₈FNO₁₂, 827.0012); fragmented product ions: 774.2 $[M+NH_4-3H_2O]^+$, 756.3 $[M+NH_4-4H_2O]^+$, 742.3 $[M+NH_4-4H_2O-CH_2]^+$, 724.3 $[M+NH_4-5H_2O-CH_2]^+$, 582.1, 564.1 $[582.1-H_2O]^+$, 538.1 $[582.1-H_2O-C_2H_2]^+$. The ESI-MS/MS and NMR spectra of **25** are illustrated in **Figures S29** to **S35** and **Table S10**.

Phylogenetic analysis and sequence alignment of *tcsA* **through** *tcsD*, **and the AT4 domain in** *fkbB*. Gene sequences obtained from GenBank were manually edited and aligned based on their protein sequence using the ClustalX¹⁹ and MEGA 4²⁰ programs. Deduced amino acid sequences of the AT domain in TcsA, the ACP domain in TcsA, as well as the TcsB, TcsC, TcsD, and the AT domain of module 4, were used as queries to search for related proteins in the nr protein database at NCBI using the BLASTP algorithm with default parameters. Distances were calculated with the Dayhoff-PAM matrix using PROTDIST and then a neighbor-joining tree was produced using NEIGHBOUR in the PHYLogeny Interface Package v3.65 (PHYLIP)²¹. One hundred bootstrap resamplings were performed using **Preparation and purification of a recombinant ACP**_{tesA}, **TcsC**, **Sfp and TcsD**. For the expression and purification of the ACP domain of TcsA (ACP_{tesA}), the expression plasmid pTCSA-ACP was introduced into *E.coli* BL21(DE3)pLysS and the BL21(DE3)pLysS/pTCSA-ACP strain was grown in LB medium supplemented with 50 µg/ml ampicillin, and 25 µg/ml chloramphenicol. Each liter of culture was inoculated with 10 ml of overnight starter culture. The culture was grown at 37 °C to an optical density (OD₆₀₀) of 0.6, then expression was induced with 0.1 mM isopropyl-β-D-thiogalactopyranoside (IPTG). At the same time, the incubation temperature was shifted from 37 to 18 °C and the culture was grown for another 15 to 16 h. Cells were harvested by centrifugation (10 min at 6,000 × *g*), re-suspended in lysis buffer (50 mM sodium phosphate buffer, pH 8.0, containing 300 mM NaCl and 10 mM imidazole), and then lysed by sonication. The lysate was clarified by centrifugation (30 min at 15,000 × *g*). Recombinant ACP_{tesA} was purified protein was subjected to 13% SDS-PAGE and visualized with Coomassie blue staining. The resultant protein was dialyzed against 50 mM phosphate buffer (pH 7.2) containing 1 mM EDTA, 1 mM dithiothreitol (DTT) and 10% glycerol, and then stored at -80 °C before use in the *in vitro* reaction.

For the expression and purification of TcsC, the expression plasmid pTCSC was introduced into *E.coli* BL21(DE3), and the BL21(DE3)/pTCSC strain was grown in LB medium supplemented with 50 μ g/ml kanamycin. Each liter of culture was inoculated with 10 ml of overnight starter culture. The culture was grown at 37 °C to an OD₆₀₀ of 0.6, then expression was induced with 0.1 mM IPTG. At the same time, the incubation temperature was shifted from 37 to 28 °C and the culture was grown for another 15 to 16 h. Recombinant TcsC was purified as described above.

For the expression and purification of Sfp (PPTase), the expression plasmid pSFP was introduced into *E.coli* BL21(DE3) pLysS, and the BL21(DE3)pLysS/pSFP strain was grown in LB medium

S80

supplemented with 50 μ g/ml ampicillin and 25 μ g/ml chloramphenicol. Each liter of culture was inoculated with 10 ml of overnight starter culture. The culture was grown at 37 °C to an OD₆₀₀ of 0.6, then expression was induced with 0.1 mM IPTG. The culture was grown for another 4 h. Recombinant Sfp was also purified as described above.

For the expression and purification of TcsD, pTCSD was introduced into another heterologous host *S. lividans* TK24, by transformation via a standard method¹³. The resulting *S. lividans* TK24/pTCSD was grown in YEME medium with 25 μ g/ml of thiostrepton according to a previous method²². Recombinant TcsD was also purified as described above.

Protein concentrations were determined with a commercial Bio-Rad protein assay kit, and then corrected for the *in vitro* reactions as described below.

In vitro characterization of TcsC as 2-pentenyl-ACP carboxylase/reductase and TcsD as acyl-ACP dehydrogenase. As a substrate for TcsC and TcsD reactions, 2-pentenyl-ACP_{tcsA} was prepared by phosphopantetheinylation of apo-ACP_{tcsA} using recombinant Sfp from *B. subtilis*²³. The reaction mixture (50 µl), which contained 340 µM recombinant apo-ACP_{tcsA}, 100 mM sodium phosphate buffer (pH 7.2), 100 mM MgCl₂, 2.5 mM *trans*-2-pentenyl-CoA (**11**), and 10 µM recombinant Sfp, was incubated at 37 °C for 30 min. To collect the acylated ACP protein, 10% (v/v) trichloroacetic acid (TCA) solution was added, and the mixture was centrifuged (10 min at $13,000 \times g$). The precipitate was reconstituted in TcsC reaction mixture (100 µl), which contained 10 µg recombinant TcsC, 5 mM NADPH and 33 mM NaHCO₃. The reactions were run for 1 h at 30 °C to examine the reductive carboxylation activity of TcsC on *trans*-2-pentenyl-ACP_{tcsA}. After the reaction, the enzymatic reaction product was also concentrated by using TCA precipitation method described above. To check the dehydrogenation activity of TcsD on *trans*-2-pentenyl-ACP_{tcsA}, the precipitates obtained from the above Sfp-catalyzed reaction were separately reconstituted in TcsD reaction mixture (100 µl) containing 100 mM sodium phosphate buffer (pH 7.2), 6 µM phenazine methosulfate (PMS), 0.4 mM FAD, and 8 µg recombinant TcsD, then incubated at 37 °C

for 30 min, as previously reported²⁴. Reactions to examine the enzymatic activity of TcsD (or TcsC) on propylmalonyl-ACP_{tcsA} (or 2*E*-2,4-pentadienyl-ACP_{tcsA}) were sequentially conducted by dissolving the precipitate obtained by the TcsC-catalyzed (or TcsD-catalyzed) reaction into the above-mentioned TcsD (or TcsC) reaction mixture, which was then incubated at 37 °C for 30 min (or 1 h). The same reactions using boiled TcsC and TcsD were carried out as controls.

The molecular mass of 2-pentenyl-ACP_{tesA} and its enzymatic reaction products were analyzed on a Waters/Micromass Quattro *micro* tandem ESI-MS instrument operated in the positive ion mode, scanning from 600 to 1,600 *m/z*. The optimized tune parameters were as follows: capillary and cone voltage at 2.0 kV and 40 V, respectively; cone gas and desolvation gas set at 150 and 650 l/h, respectively; and source and desolvation temperatures at 120 and 330 °C, respectively. The mass spectra were processed and deconvoluted using MassLynx MaxEnt 1 software from Waters. The uniform Guassian model and a resolution of 0.75 Da were used for MaxEnt 1 deconvolution (see **Figure 5**). Protein profiles from the reaction mixtures were examined by HPLC. Samples were separated on an XTerra C₁₈ column (250 × 4.6 mm, 5 μ m; Waters) interfaced with an UV detector (220 nm) using an isocratic elution of 60% (v/v) aqueous acetonitrile containing 0.1% formic acid at a flow rate of 0.1 ml/min over 40 min.

In vitro characterization of TcsC as 2-pentenyl-CoA carboxylase/reductase and TcsD as acyl-CoA dehydrogenase. Recombinant TcsC was assayed using previously reported methods with modification^{25,26}. TcsC (10 μ g) was incubated with crotonyl- (10) or *trans*-2-pentenyl- (11) CoA (2 mM each) in reaction buffer (100 mM Tris-HCl, pH 8.0, 5 mM NADPH, and 33 mM NaHCO₃) at 30 °C for 1 h. Recombinant TcsD (8 μ g) was incubated with 11 (2 mM) in reaction buffer (100 mM sodium phosphate buffer, pH 7.2, 0.4 mM FAD, and 6 μ M PMS) at 37 °C for 30 min. Reactions were carried out as described above for the *in vitro* reaction using ACP_{tcsA} to qualitatively determine the preferred activities of both enzymes on acyl-CoAs or acyl-ACPs. Detection of TcsC-mediated production of ethylmalonyl- (7) or propylmalonyl- (8) CoA from 100 μ l of reactants was carried out using HPLC-ESI-

MS/MS analysis as previously described⁹.

Intracelluar CoA-ester profiles derived from FK506- and FK520-producing wild-type strains. Aliquots of cultures of the wild-type FK506 (**1**)-producing strain *Streptomyces* sp. KCTC 11604BP and the FK520 (**2**)-producing strain *S. hygroscopicus* var. *ascomyceticus* ATCC 14891 were taken at 3 d, and were subjected to silicon-oil layer centrifugation followed by a solid-phase extraction procedure, then analyzed by HPLC-ESI-MS/MS as described above⁹ (see **Figure S20**). Authentic allylmalonyl-CoA (**9**) was chemically synthesized in this study (see the earlier section in **Supporting Methods; Figure S21**).

3-Dimensional (3D) modeling, docking and molecular dynamics simulation of 1, 2, 24, and 25 in the presence of FKBP12-calcineurins complex. The immunosuppressive activities of the mutasynthetic novel analogs **24** and **25** were predicted before they were subjected to *in vitro* bioassays. Structural scaffolds of the analogs along with the known immunosuppressants **1** and **2** were docked separately into the binding sites of the refined calcineurin A/B complex using the LigandFit²⁷ module in Discovery Studio 2.0 based on the crystal structure of the **1**/calcineurin complex²⁸ (PDB:1TCO). The scoring function with specific parameters for the complex containing **1** analogs was used to rank the docking poses. The conformation with the lowest binding energy and the greatest number of members in the cluster, indicating good convergence, was selected as the best conformation. The best orientation was identified and optimized using the scoring function based on the CHAMM force field²⁹ and energy minimization for induced-fit simulation³⁰. The pose with lowest energy was selected as the initial conformation for further longtime molecular dynamics simulation.

The molecular dynamics simulations were performed with the AMBER 10 program³¹. The AMBER ff03 all atom force field31³² was used for the protein and the general AMBER force field³³ was used for docked scaffolds. The energy minimization for each complex was performed by a combination of the steepest descent method for 5,000 steps and the conjugated gradient method for another 5,000 steps. After the minimization, each system was gradually heated from 0 to 300 K over 100 ps under the

S83

isothermal-isochoric (NVT) ensemble condition and equilibrated at 300 K for 100 ps. Finally, 10-ns position-restrained molecular dynamics simulations were conducted at 1 atm and 300 K under the isothermal-isobaric (NpT) ensemble condition^{34,35}. During the simulation, the SHAKE algorithm³⁶ was applied to constrain the covalent bonds to hydrogen atoms. The time step and nonbonding interaction cut-off radius were set to 2.0 fs and 10.0 Å, respectively. Coordinates were saved every 1.0 ps during the entire process (see **Figure S36** and **Supporting Notes**).

Calculation of the binding free energy obtained from the virtual fixation between each FK506 analog and the FKBP12-calcineurins complex can simulate the ligand affinities around the complex, thus enabling inference of the relative immunosuppressive activities of analogs 24 and 25 compared with those of 1 and 2. The binding free energy between FK506 analogs and the calcineurin complex was calculated with the MM-PBSA approach³⁷⁻³⁹ according to the following equation $\Delta G_{\text{binding}} = \Delta G_{\text{MM}} + \Delta G_{\text{solv}} - T\Delta S$; $\Delta G_{\text{binding}}$: binding free energy; ΔG_{MM} : molecular mechanical energy; ΔG_{solv} : solvation energy; $T\Delta S$: entropy contribution. The molecular mechanical energy is calculated by the following equation $\Delta G_{MM} = \Delta G_{elec} + \Delta G_{vdw}$; ΔG_{elec} : electrostatic energy; ΔG_{vdw} : van der Waals energy. The solvation energy is divided into two components; $\Delta G_{solv} = \Delta G_{elec.sol} + \Delta G_{nonpol.sol}$, where $\Delta G_{elec.sol}$ represents the electrostatic contribution to solvation energy, and $\Delta G_{nonpol.sol}$ means the nonpolar solvation term. Here, the polar contribution was calculated by solving the Poisson-Boltzmann equation using the PBSA program in AMBER 10^{31} , whereas the latter is determined using $\Delta G_{nonpol.sol} = \gamma(SASA) + b$, where γ represents surface tension, b is a constant, whereas SASA is the solvent-accessible surface area $(Å^2)$ determined by the LCPO method⁴⁰. The coefficients y and b were set to 0.0072 kcal (mol \cdot Å²)⁻¹ and 0, respectively⁴¹. Two hundred snapshots from the last 2.0 ns of the production stage were extracted for calculation of the binding free energy. The polar contribution term of the solvation energy was calculated using the PBSA program in AMBER 10³¹. Normal mode analysis was conducted to estimate entropic changes using the mode $\operatorname{program}^{42}$ in AMBER 10²⁹. Fifty snapshots of each system were selected for the entropy calculation⁴³⁻⁴⁵ (see **Table S11** and **Supporting Notes**).

In vitro **T-cell activation assay.** The relative immunosuppressive properties of the mutasynthetic analogs **24** and **25**, compared with authentic **1** and **2**, were determined using T lymphocytes as described elsewhere⁴⁶. In brief, human T-cells (1 x 10⁶ cells/well) were activated with CD3/CD28 antibodies (BD Pharmingen; 0.5 µg/ml for each), then treated with two different concentrations (0.1 and 1.0 nM) of **1**, **2**, **24** and **25** for 16 to 20 hr. After removal of cell debris by routine centrifugation, the supernatant was subjected to ELISA (R&D Systems) to quantify the level of interleukin-2 secreted from activated T-cells. The level of interleukin-2 obtained from T-cells activated with CD3/CD28 without further treatment with the above compounds was used as a control (see **Figure 8**).

In vitro neurite outgrowth assay using human neuroblastoma cells. The relative nerve regeneration activities of the mutasynthetic analogs 24 and 25, compared with authentic 1 and 2, were determined using human neuroblastoma cells as described elsewhere^{47,48}. The human neuroblastoma SH-SY5Y cells were plated in a 96-well plate (1x10³ cells/well) and treated with nerve growth factor (NGF; KOMA Biotech; 10 ng/ml) to induce neurite outgrowth in the presence or absence of 1 nM 1, 2, 24 or 25. The cells (n=90) were randomly photographed after 96 hr of cultivation, then the number of cells with outgrowth was counted. The neurite lengths were measured on photographic prints as previously described⁴⁷. Duplicate wells were run in all experiments, and the entire experiment was replicated with three times. Neurite length estimated from samples treated with NGF alone was used as a control (see **Figure 8** and **Figure S37**).

Statistical analysis. For statistical comparisons of group differences, especially for both the T-cell activation and neurite outgrowth assays, quantitative data were analyzed by one-way analysis of variance (ANOVA) followed by Fisher's t-test according to the statistical program SigmaStat (Jandel Scientific; version 3.1).

Supporting Notes

The binding modes of 1 and its analogs. The effect of structural modification of the allyl group of 1 on its binding modes was investigated by analyzing molecular dynamics (MD) trajectories. Superimposition of the average structures of FK506 analogs showed that neither modification significantly altered the binding modes of the FKBP12-1-calcineurin complex. This finding indicates that the key residues of the calcineurin complex are relatively hydrophobic: Trp352 in calcineurin A, and Met118 and Val119 in calcineurin B. Among the amino acids in the active sites of the calcineurin complex, Ser353 is the only polar residue that provides an electrostatic interaction to orient the binding mode of 1 and its analogs. Before starting MD simulation, the hydroxyl group of Ser353 in calcineruin A pointed to the outer spheres of 1 and its analogs. After MD refinement, however, the hydroxyl group of Ser353 in both calcineurin-1 and -24 complexes was turned in the direction of their side chains, forming an electrostatic interaction as shown in Figure S36a and c. In contrast, the orientation of the hydroxyl group of Ser353 in the calcineurin-2 and -25 complexes remained outward as shown in Figure S36b and d. Although the conformations of 1 and 24 during MD simulation are similar, the average distance between the oxygen group of Ser353 and C37 of 24 (2.784Å) is shorter than that of 1 (2.983Å). Snapshots of the active site structure of all of the above simulations shown in Figure S36 provide more detailed information regarding the interaction between the calcineurin residues and FK506 analogs including 1.

Binding free energy analysis. Binding free energies of **1** and its analogs were calculated with the MM-PBSA method. The calculated binding free energies of FKBP12-FK506 analogs and the calcineurin complexes are -6.42, -6.03, -7.78 and -5.82 kcal/mol for **1**, **2**, **24**, and **25**, respectively, and are listed in **Table S11**. The calcineurin-FKBP12-**24** complex had the lowest binding free energy. The electrostatic interaction of Ser353 in calcineurin A with **24** and the relatively short distance between the oxygen atom of Ser353 and C37 of **24** might have contributed to this result.

Supporting References

- MacNeil, D. J.; Gewain, K. M.; Ruby, C. L.; Dezeny, G.; Gibbons, P. H.; MacNeil, T. *Gene* 1992, 111, 61.
- 2. Motamedi, H.; Cai, S. J.; Shafiee, A.; Elliston, K. O. Eur. J. Biochem. 1997, 244, 74.
- 3. Muramatsu, H.; Mokhtar, S. I.; Katsuoka, M.; Ezaki, M. Actinomycetologica 2005, 19, 33.
- 4. Wu, K.; Chung, L.; Revill, W. P.; Katz, L.; Reeves, C. D. Gene 2000, 251, 81.
- 5. Walczak, R. J.; Hines, J. V.; Strohl, W. R.; Priestley, N. D. Org. Lett. 2001, 3, 2277.
- 6. Bierman, M.; Logan, R.; O'Brien, K.; Seno, E. T.; Rao, R. N.; Schoner, B. E. Gene 1992, 116, 43.
- 7. Zhou, P.; Florova, G.; Reynolds, K. A. Chem. Biol. 1999, 6, 577.
- Yoon, Y. J.; Beck, B. J.; Kim, B. S.; Kang, H. Y.; Reynolds, K. A.; Sherman, D. H. *Chem. Biol.* 2002, 9, 203.
- 9. Park, J. W.; Jung, W. S.; Park, S. R.; Park, B. C.; Yoon, Y. J. J. Mass Spectrom. 2007, 42, 1136.
- 10. Park, J. W.; Mo, S.; Park, S. R.; Ban, Y. H.; Yoo, Y. J.; Yoon, Y. J. Anal. Biochem. 2009, 393, 1.
- Liu, Y.; Hazzard, C.; Eustáquio, A. S.; Reynolds, K. A.; Moore, B. S. J. Am. Chem. Soc. 2009, 131, 10376.
- 12. Shirling, E. B.; Gottlieb, D. Int. J. Syst. Bacteriol. 1966, 16, 313.
- Kieser, T.; Bibb, M. J.; Buttner, M. J.; Chater, K. F.; Hopwood, D. A. *Practical Streptomyces Genetics*; Ch. 19; John Innes Foundation: Norwich, England, 2000.
- Oki, T.; Matsuzawa, K.; Kiyoshima, K.; Yoshimoto, A.; Naganawa, H.; Takeuchi, T.; Umezawa, H. J. Antibiot. (Tokyo) 1981, 34, 783.
- Sambrook, J.; Fritsch, E. F.; Maniatis, T. *Molecular Cloning: A Laboratory Manual*, 3rd ed.; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2000.
- 16. http://gate.smallsoft.co.kr:8080/pks
- 17. http://blast.ncbi.nlm.nih.gov/Blast.cgi
- 18. Mo, S.; Ban, Y. H.; Park, J. W.; Yoo, Y. J.; Yoon, Y. J. J. Ind. Microbiol. Biotechnol. 2009, 36, 1473.

- Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.;
 Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G.
 Bioinformatics 2007, 23, 2947.
- 20. Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. Mol. Biol. Evol. 2007, 24, 1596.
- Felsenstein, J. *PHYLIP (Phylogeny Inference Package) Version 3.6.* Distributed by the author;
 Department of Genome Sciences, University of Washington, Seattle, WA, 2005.
- 22. Ghatge, M. S.; Reynolds, K. A. J. Bacteriol. 2005, 187, 7970.
- Quadri, L. E.; Weinreb, P. H.; Lei, M.; Nakano, M. M.; Zuber, P.; Walsh, C. T. *Biochemistry* 1998, *37*, 1585.
- 24. Zhang, Y. X.; Denoya, C. D.; Skinner, D. D.; Fedechko, R. W.; McArthur, H. A.; Morgenstern, M. R.; Davies, R. A.; Lobo, S.; Reynolds, K. A.; Hutchinson, C. R. *Microbiology* 1999, *145*, 2323.
- Wallace, K. K.; Bao, Z. Y.; Dai, H.; Digate, R.; Schuler, G.; Speedie, M. K. Reynolds, K. A. *Eur. J. Biochem.* **1995**, *233*, 954.
- Eustáquio, A. S.; McGlinchey, R. P.; Liu, Y.; Hazzard, C.; Beer, L. L.; Florova, G.; Alhamasheh, M. M.; Lechner, A.; Kale, A. J.; Kobayashi, Y.; Reynolds, K. A.; Moore, B. S. *Proc. Natl. Acad. Sci. USA* 2009, *106*, 12295.
- 27. Montes, M.; Miteva, M. A.; Villoutreix, B. O. Proteins 2007, 68, 712.
- Griffith J. P.; Kim, J. L.; Kim, E. E.; Sintchak, M. D.; Thomson, J. A.; Fitzgibbon, M. J.; Fleming, M. A.; Caron, P. R.; Hsiao, K.; Navia, M. A. *Cell* 1996, 82, 507.
- Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench,
 O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. Jr. J. Comput. Chem. 2010, 31, 671.
- 30. Chang, C. E.; Gilson, M. K. J. Am. Chem. Soc. 2004, 126, 13156.
- 31. Case, D. A.; Darden, T. A.; Cheatham, T. E. III.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.;

Babin, V.; Kollman, P. A. AMBER 10; University of California, San Francisco, CA, 2008.

- Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.;
 Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. J. Comput. Chem. 2003, 24, 1999.
- 33. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.
- 34. Wang, J.; Deng, Y.; Roux, B. Biophys. J. 2006, 91, 2798.
- 35. Cecchini, M.; Krivov, S. V.; Spichty, M.; Karplus, M. J. Phys. Chem. B 2009, 113, 9728.
- 36. Rychaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1997, 2, 327.
- 37. Massova, I.; Kollman, P. A. Perspec. Drug Discov. Design 2000, 18, 113.
- 38. Wang, J.M.; Morin, P.; Wang, W.; Kollman, P. A. J. Am. Chem. Soc. 2001, 123, 5221.
- Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.;
 Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. 3rd. Acc. Chem. Res.
 2000, 33, 889.
- 40. Weiser, J.; Shenkin, P. S.; Still, W. C. J. Comput. Chem. 1999, 20, 217.
- 41. Weis, A.; Katebzadeh, K.; Söderhjelm, P.; Nilsson, I.; Ryde, U. J. Med. Chem. 2006, 49, 6596.
- 42. Brooks, B. R.; Janezic, D.; Karplus, M. J. Comput. Chem. 1995, 16, 1522.
- 43. Chang, C. -E. A.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. USA 2007, 104, 1534.
- 44. Deng, Y.; Roux, B. J. Phys. Chem. B 2009, 113, 2234.
- 45. Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.
- 46. Choi, J. M.; Ahn, M. H.; Chae, W. J.; Jung, Y. G.; Park, J. C.; Song, H. M.; Kim. Y. E.; Shin, J. A.;
 Park, C. S.; Park, J. W.; Park, T. K.; Lee, J. H.; Seo, B. F.; Kim, K. D.; Kim, E. S.; Lee, D. H.; Lee, S. K.; Lee, S. K. *Nat. Med.* 2006, *12*, 574.
- 47. Revill, W. P.; Voda, J.; Reeves, C. R.; Chung, L.; Schirmer, A.; Ashley, G.; Carney, J. R.; Fardis, M.; Carreras, C. W.; Zhou, Y.; Feng, L.; Tucker, E.; Robinson, D.; Gold, B. G. *J. Pharmacol. Exp. Ther.*2002, *302*, 1278.
- 48. Gold, B. G.; Densmore, V.; Shou, W.; Matzuk, M. M.; Gordon, H. S. J. Pharmacol. Exp. Ther. 1999, 289, 1202.