Biosynthesis of the Allylmalonyl-CoA Extender Unit for the FK506 PKS (Polyketide Synthase) Proceeds Through a Dedicated PKS and Facilitates the Mutasynthesis of New Analogs

SangJoon Mo, ${ }^{1,8}$ Dong Hwan Kim,,2,3,8 Jong Hyun Lee, ${ }^{1}$ Je Won Park, ${ }^{1}$ Devi B. Basnet, ${ }^{1}$ Yeon Hee Ban, ${ }^{1}$ Young Ji Yoo, ${ }^{1}$ Shu-wei Chen, ${ }^{1}$ Sung Ryeol Park, ${ }^{1}$ Eun Ae Choi, ${ }^{1}$ Eunji Kim, ${ }^{1}$ Ying-Yu Jin, ${ }^{4}$ Sung-Kwon Lee, ${ }^{4}$ Ju Yeol Park, ${ }^{5}$ Yuan Liu, ${ }^{6}$ Mi Ok Lee, ${ }^{2}$ Keum Soon Lee, ${ }^{2}$ Sang Jun Kim, ${ }^{2}$ Dooil Kim, ${ }^{7}$ Byoung Chul Park, ${ }^{7}$ Sang-gi Lee, ${ }^{1}$ Ho Jeong Kwon, ${ }^{5}$ Joo-Won Suh, ${ }^{4}$ Bradley S. Moore, ${ }^{6}$ Si-Kyu Lim, ${ }^{*, 2}$ and Yeo Joon Yoon ${ }^{*, 1}$
${ }^{1}$ Department of Chemistry and Nano Science, Ewha Womans University, Seoul 120-750, Republic of Korea. ${ }^{2}$ GenoTech Corporation, Daejeon 305-343, Republic of Korea. ${ }^{3}$ Department of Microbiology and Molecular Biology, Chungnam National University, Daejeon 305-764, Republic of Korea, ${ }^{4}$ Division of Bioscience and Bioinformatics, Myongji University, Gyeonggi 449-728, Republic of Korea. ${ }^{5}$ Department of Biotechnology, The Translational Research Center for Protein Function Control, Yonsei University, Seoul 120-746, Republic of Korea. ${ }^{6}$ Scripps Institution of Oceanography and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, CA 92093-0204, USA. ${ }^{7}$ Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-600, Republic of Korea. ${ }^{8}$ These authors contributed equally to this work.

EMAIL: slim@genotech.co.kr; joonyoon@ewha.ac.kr

Contents

Table S1 S5
Figure S1 S8
Figure S2 S9
Table S2 S10
Figure S3 S12
Table S3 S13
Figure S4 S14
Table S4 S15
Figure S5 S17
Table 55 S18
Figure S6 S20
Table S6 S21
Table S7 S23
Table $\mathbf{S 8}$ S27
Figure $\mathbf{S 7}$ S30
Figure S8 S31
Figure S9 S32
Figure S10 S33
Figure S11 S34
Figure S12 S35
Figure S13 S36
Figure S14 S37
Figure S15 S38
Figure S16 S39
Figure S17 S40
Figure S18 S41
Figure S19 S42
Figure S20 S43
Figure S21 S44
Figure S22 S45
Figure S23 S46
Figure S24 S47
Figure S25 S48
Figure S26 S49
Figure S27 S50
Figure S28 S51
Table S9 S52
Figure S29 S54
Figure S30 S55
Figure S31 S56
Figure S32 S57
Figure S33 S58
Figure S34 S59
Figure S35 S60
Table S10 S61
Figure S36 S63
Table S11 S64
Figure S37 S65
Figure S38 S66
Supporting Methods S67
Supporting Notes S86
Supporting References .. S87

Table S1. Deduced functions of ORFs in the FK506 biosynthetic gene cluster from Streptomyces sp. KCTC 11604BP ${ }^{\text {a }}$

Protein (residues)	Homology in related organism			Best match		Proposed function
	Streptomyces	Streptomyces sp.	Streptomyces	Source		
	kanamyceticus	ATCC 55098 ${ }^{\text {c }}$	tsukubaensis			
	KCTC 9225 ${ }^{\text {b }}$		NRRL 18488		identity/similarity (residues)	
	Percent identity/similarity (residues)			Organism/GenBank accession no.		
TcsA			AllA ${ }^{\text {d }}$			
AT	$86 / 92$	$83 / 91$	100 / 100	Nakamurella multipartita DSM	$41 / 52$	Acyl transferase domain
(300)	(300)	(300)	(431)	44233 / YP_003203169	(578)	
ACP	67 / 78	74 / 82	$100 / 100$	N. multipartita DSM 44233 /	$39 / 50$	Acyl carrier protein (ACP)
(99)	(99)	(99)	(431)	YP_003203169	(578)	
TcsB			AllK ${ }^{\text {e }}$			
KS- ${ }_{\text {- } \text { term }}$	$82 / 87$	$81 / 87$	$100 / 100$	N. multipartita DSM 44233 /	$48 / 62$	
(448)	(448)	(448)	(796)	YP_003203170	(2014)	
KS- ${ }_{\text {cterm }}$	$78 / 84$	$75 / 82$	$100 / 100$	Burkholderia thailandensis E264 /	$34 / 49$	
(320)	(320)	(320)	(796)	ZP_05589458	(2126)	
TcsC	90/94	$87 / 94$	AllR ${ }^{\text {f }}$	Streptomyces lasaliensis /	66/76	Crotonyl-CoA reductase
(445)	(445)	(443)	$100 / 100$ (445)	CAQ64684	(454)	
TcsD	87 / 92	$86 / 92$	AllD ${ }^{\text {g }}$	Catenulispora acidiphila DSM	71 / 81	Acyl-CoA/ACP dehydrogenase
(386)	(386)	(386)	99 / 100 (386)	44928 / YP_003117666	(386)	
Tcs1	- ${ }^{\text {h }}$	$-{ }^{\text {h }}$	AllM ${ }^{\text {i }}$	Streptomyces pristinaespiralis ATCC	$66 / 77$	Methionine gamma lyase
(384)			100 / 100 (384)	25486 / ZP_05010287	(405)	

Tcs2	$\sim^{\text {h }}$	$\sim^{\text {h }}$	Alln ${ }^{\text {j }}$	Streptomyces griseoflavus Tu4000 /	$52 / 65$	AsnC-family transcriptional
(155)			100 / 100 (155)	ZP_05542633	(163)	regulatory protein
Tcs3	$-^{\text {h }}$	$-^{\text {h }}$	AllP ${ }^{\text {k }}$	Streptomyces peucetius ATCC 27952	$61 / 74$	Cytochrome P450
(409)			99 / 100 (409)	/ CAE53706	(410)	
Tcs4	$-^{\text {h }}$	$-^{\text {h }}$	AllO^{1}	Rhodococcus opacus B4 /	$38 / 55$	Oxidoreductase
(395)			99 / 100 (395)	YP_002780495	(404)	
Tcs5	$-^{\text {h }}$	$-^{\text {h }}$	AllS ${ }^{\text {m }}$	Corynebacterium glutamicum /	42 / 60	3-oxoacyl-ACP reductase
(250)			99 / 100 (218)	BAD84134	(249)	
FkbG	86 / 89	$86 / 90$ (99;	FkbG ${ }^{\text {n }}$	Streptomyces hygroscopicus var.	81 / 86	Hydroxymalonyl-ACP
(222)	(222)	frameshift found)	100 / 100 (222)	ascomyceticus / AAF86386	(222)	methyltransferase
FkbH	$86 / 90$	$86 / 91$	$-{ }^{\circ}$	S. hygroscopicus var. ascomyceticus /	79 / 86	Formation of glyceryl-ACP
(362)	(362)	(362)		AAF86387	(360)	
FkbI	$87 / 92$	85/89	$-{ }^{\circ}$	S. hygroscopicus var. ascomyceticus /	$85 / 90$	Acyl-CoA dehydrogenase
(366)	(366)	(366)		AAF86388	(366)	
FkbJ	$85 / 89$	80/88	$-{ }^{\circ}$	S. hygroscopicus var. ascomyceticus /	$73 / 84$	Acyl carrier protein
(86)	(86)	(86)		AAF86389	(86)	
FkbK	$88 / 90$	$86 / 89$	$-{ }^{\circ}$	S. hygroscopicus var. ascomyceticus /	83/89	Glyceryl-ACP C3 oxidation
(291)	(283)	(282)		AAF86390	(282)	
FkbL	89 / 94	$88 / 92$	$\underline{-}$	S. hygroscopicus var. ascomyceticus /	86/93	Lysine cyclodeaminase
(345)	(345)	(345)		AAF86391	(345)	
FkbC	$82 / 86$	Recombination	- ${ }^{\circ}$	S. hygroscopicus var. ascomyceticus /	$77 / 84$	FK506 polyketide synthase
(3598)	(3597)	found		AAF86392	(3591)	

FkbB	$83 / 87$	Recombination	$-{ }^{0}$	Streptomyces sp. MA6548 /	$81 / 86$	FK506 polyketide synthase
(7646)	(7591)	found		AAC68815	(7576)	
FkbO	$85 / 90$	$84 / 90$	$-^{\circ}$	Streptomyces sp. MA6548 /	86/90	DHCHC biosynthetic protein
(330)	(332)	(333)		AAC68817	(332)	
FkbP	$83 / 87$	77 / 81	$-^{\circ}$	Streptomyces sp. MA6548 /	82 / 87	FK506 peptide synthetase
(1532)	(1506)	(1592)		AAC68816	(1504)	
FkbA	84 / 89	82 / 87	$-^{\circ}$		81/87	FK506 polyketide synthase
				Streptomyces sp. MA6548 / T30283		
FkbD	89 / 92	$88 / 91$	$\underline{-}$	S. hygroscopicus var. ascomyceticus /	88/93	FK506 C9 hydroxylase
(388)	(388)	(388)		AAF86397	(388)	
FkbM	82 / 90	$85 / 91$	$-^{\circ}$	Streptomyces sp. MA6548 /	84 / 91	31-O-demethyl-FK506
(260)	(212)	(260)		AAC44360	(260)	methyltransferase
FkbN	82 / 89	82 / 89	$-^{\circ}$	S. hygroscopicus var. ascomyceticus /	71 / 82	ATP dependent transcriptional
(923)	(934)	(934)		AAF86399	(913)	regulator
FkbQ	$84 / 90$	$81 / 89$	$-^{\circ}$	S. hygroscopicus var. ascomyceticus /	$83 / 88$	Thioesterase II
(262)	(255)	(255)		AAF86400	(247)	
Tcs6	$-^{\text {h }}$	$-^{\text {h }}$	- ${ }^{0}$	Pectobacterium carotovorum WPP14	$34 / 58$	Putative lipoprotein
(69)				/ ZP_03831823	(276)	
Tcs7	$\sim^{\text {h }}$	$\sim^{\text {h }}$	- ${ }^{0}$	Streptomyces clavuligerus ATCC	77 / 84	
(474)				27064 / EDY53357	(304)	LysR-family transcriptional regulator

${ }^{\text {k }} \mathrm{ADG} 39437 ;{ }^{1} \mathrm{ADG} 39438 ;{ }^{\mathrm{m}} \mathrm{ADG} 39439 ;{ }^{\mathrm{n}} \mathrm{ADG} 39440 ;{ }^{\text {o }}$ not reported.

Figure S1. HPLC-ESI-MS/MS analysis of FK506 congeners obtained from wild-type FK506 (1)producing Streptomyces sp. KCTC 11604BP and five mutant strains from which tcs1, tcs2, tcs3, tcs 4 or tcs5 had been in-frame-deleted. The vertical blue dotted lines indicate the identity of the FK506 congeners $\mathbf{1}$ and FK520(2). Tracing of both $\mathbf{1}$ and $\mathbf{2}$ was done in multiple reactions monitoring mode by selecting mass transit from the ammonium-adducted molecular ion to the specific fragmented product ion: $821>576$ for $\mathbf{1}$ and $809>564$ for $\mathbf{2}$.

Figure S2. Phylogenetic analysis of TcsA AT domains and their signature motifs. (a) Phylogenetic tree of the acyl transferase (AT) domains obtained by comparing the amino acid sequence of each TcsA AT domain derived from three 1-producing strains with those in the NCBI non-redundant (nr) protein database. (b) TcsA AT domain signature motifs. Three dominant motifs, composed of 6,6 , and 4 amino acid residues, are assigned with a group of ATs. Color codes used in this figure are: yellow, discrete malonyl (dm)-specific ATs; blue, malonyl (m)-specific ATs; green, methylmalonyl (mm)-specific ATs; orange, methoxylmalonyl (mo)-specific ATs; purple, ethylmalonyl (em)-specific ATs. See Table S2.

Table S2. Sequences used in Figures S2 and S37

Protein	Organism	GenBank accession no	$\begin{gathered} \text { AT no. } \\ \text { (position) } \end{gathered}$	Substrate specificity
TcsA_AT	Streptomyces sp. KCTC 11604BP	HM116537	$4 . .303$	
TcsA_AT	Streptomyces kanamyceticus KCTC 9225	HM116536	$8 . .307$	
TcsA_AT	Streptomyces sp. ATCC 55098	HM116538	$8 . .307$	
FkbB	Streptomyces sp. KCTC 11604BP	HM116537	AT4 (6571..6853)	
FkbB	S. kanamyceticus KCTC 9225	HM116536	AT4 (6516..6798)	
DszD	Sorangium cellulosum	AAY32968	$1 . .291$	
FenF	Bacillus subtilis	AAF08794	$1 . .303$	
LnmG	Streptomyces atroolivaceus	AAN8520	$1 . .276$	Discrete malonyl-CoA-
MmpIII	Pseudomonas fluorescens	AAM12912	AT2 (327..607)	specific AT
PedD	symbiont bacterium of Paederus fuscipe	AAS47563	$1 . .276$	
AveAI	Streptomyces avermitilis	BAA84474	AT2 (2641..2910)	
EpoA	So. cellulosum	AAF62880	AT0 (545..841)	
FkbA	Streptomyces hygroscopicus var.	AAF86396	AT10 (5904..6160)	
	ascomyceticus ATCC 14891			
GdmAIII	Streptomyces hygroscopicus	AAO06918	AT6 (585..886)	
HdmAIII	S. hygroscopicus	AAY28227	AT6 (585..886)	Malonyl-CoA-
NidAI	Streptomyces caelestis	AAC46024	AT1 (1532..1821)	specific AT
NysC	Streptomyces noursei ATCC 11455	AAF71776	AT3 (546..835)	
PimSI	Streptomyces natalensis	CAC20931	AT3 (3831..4120)	
RapA	S. hygroscopicus	CAA60460	AT2 (3798..4061)	
RifA	Amycolatopsis mediterranei	AAC01710	AT2 (2718..2976)	
SorA	So. cellulosum	AAK19883	AT2 (2629..2930)	

b

Figure S3. Phylogenetic analysis of TcsA ACP domains and their sequence alignment. (a) Phylogenetic tree of the acyl carrier protein (ACP) domains obtained by comparing the amino acid sequence of each TcsA ACP domain derived from three 1-producing strains with those in the NCBI nr protein database. Color codes used in this figure are: green, ACP domains from type I PKSs; blue, ACP domains from type II PKSs; orange, ACP from E. coli FAS. (b) Sequence alignment of TcsA ACP domains with other ACPs from PKSs and FAS. The conserved active site is framed in red. See Table S3.

Table S3. Sequences used in Figure S3

Protein	Organism	GenBank accession no	$\overline{\mathbf{A C P}}$ position	Description
TcsA_ACP	Streptomyces sp. KCTC 11604BP	HM116537	$329 . .427$	
TcsA_ACP	Streptomyces kanamyceticus KCTC 9225	HM116536	328.. 426	
TcsA_ACP	Streptomyces sp. ATCC 55098	HM116538	$331 . .429$	
AveAI	Streptomyces avermitilis	BAA84474	$366 . .441$	
EpoD	Sorangium cellulosum	AAF62883	1424.. 1505	
EryAII	Saccharopolyspora erythraea NRRL 2338	CAM00064	1385..1470	
GdmAI	Streptomyces hygroscopicus	AAO06916	1000.. 1085	
NidAIII	Streptomyces caelestis	AAC46026	1352.. 1437	
NysB	Streptomyces noursei ATCC 11455	AAF71775	1480.. 1546	
RifB	Amycolatopsis mediterranei	AAC01711	1612..1697	
TylG	Streptomyces fradiae	AAB66506	1450.. 1533	
Act	Streptomyces coelicolor A3(2)	ACPCAA45045	$1 . .86$	
DpsG	Streptomyces peucetius	AAD04718	$1 . .84$	
FrnJ	Streptomyces roseofulvus	AAC18105	$1 . .85$	
FrnN	S. roseofulvus	AAC18109	1.. 83	
Oct	Streptomyces rimosus	P43677	1.. 95	隹 II PKS
TcmM	Streptomyces glaucescens	AAA67517	$1 . .83$	
WhiE	Streptomyces coelicolor	P23153	$1 . .90$	
ZhuG	Streptomyces sp. R1128	AAG30194	$1 . .86$	
EcACP	Escherichia coli	AAB27925	$1 . .78$	FAS

b

Signature motif	1	II	III	IV
TcsB_KS-n term_KCTC 11604BP	AACSS	IAHGT	KSLLGH	AFGFg
TCsB_KS-nterm_KCTC 9225	AACSS	IAHGT	KSLLGH	AFGFG
TcsB_KS-n term_ATCC 55098	AACSS	IAHGT	KSLLGH	AFGFG
AveAI_TypeI_KS	TGCSA	EGHGT	KSNIGH	SFGIG
Epod_Type I_KS	tacss	ECHGT	KANVAH	AFGLS
EryAII_TypeI_KS	tacss	EAHGT	KSNIGH	AFGIS
GdmAI_TypeI_KS	tacss	EAHGT	KSNIGH	SFGVS
LnmI_TypeI_KS	TSCss	ECAAA	KPNIGH	AVGAT
NidAIII_TypeI_KS	tacss	EAHGT	KSNIGH	AFgvs
NysB_TypeI_Ks	tacss	EAHGT	KSNIGH	SFGIS
RifB_TypeI_KS	TMCSS	EGHGT	KSVVGH	SFGAS
TylG_TypeI_KS	tacss	EAHGT	KSNIGH	AFGVS
ActI_TypeII_KS	TGCTS	NAHGS	KSMVGH	GSGFG
DpsA_TypeII_KS	AGCTS	NAHGT	KSMIGH	GSGFG
FrnL_TypeII_KS	TGCTS	NAHGS	KSMIGH	GSGFG
OxyA_TypeII_KS	AGCTS	NAHGS	KSMIGH	ASGFg
TcmK_TypeII_KS	TGCTS	NAHGS	KSMIGH	GSGFg
WhiE_TypeII_KS	TGCTS	NAHGS	KSMVGH	GSGFG
ZhuB_TypeII_KS	sGcts	NAHGS	KSMIGH	GSGFG
MonAI_TypeI_KSQ	TAQSS	ELHGT	KTNVGH	SFGMG
NidAI_TypeI_KSQ	TGQSS	ELHGT	KTNIGH	AFGMG
OleAI_TypeI_KSQ	TGQSS	ELHGT	KTNIGH	SFGMG
TylG_TypeI_KSQ	SAQSA	ELHGT	KTNVGH	SFGMG
ActI_TypeII_CLF	AEQAG	FADGA	KTTTGR	ARGRW
DpsB_TypeII_CLF	AEQAG	FADGA	KTLTGR	ARGYg
FrnM_TypeII_CLF	ADQAG	FADAA	KTQTGR	ARGHG
OxyB_TypeII_CLF	AEQAG	FADAM	KTMTGR	ARGHG
TcmL_TypeII_CLF	TEQAG	YADAA	KTMTGR	ARGMG
WhiE_TypeII_CLF	ADEAG	FADAL	KTGTGR	ARGLM
ZhuA_TypeII_CLF	GEQAG	FADAA	KSLVGR	ARGHG
TcsB_KS-c term_KCTC 11604BP	TGTTS	VPGGP	DVAVGP	----
TCsB_KS-c term_KCTC 9225	tGATS	TCGAA	DVAVGP	-----
TCsB_KS-c term_ATCC 55098	TGATS	TCGAA	GVTVGP	
DpsC_TypeII_KSIII	QVSNG	SVARV	MGWRRL	svgag
FrnI_TypeII_KSIII	GACAG	TPRAA	QANLRM	GFGAG
ZhuH_TypeII_KSIII	AACAG	VPAAR	QANLRI	GFGAG

Figure S4. Phylogenetic analysis of TcsB KS domains and their signature motifs. (a) Phylogenetic tree of the β-keto-acyl synthase (KS) domains obtained by comparing the amino acid sequence of each TcsB KS domain derived from three 1-producing strains into the NCBI nr protein database. (b) TcsB KS domain signature motifs. Four dominant motifs, composed of $5,5,6$, and 5 amino acid residues, are assigned with a group of KSs. Color codes used in this figure are: green, typical KS domains from type I PKSs; orange, typical KS Q domains from type I PKSs; purple, KSs from type II PKSs; blue, CLF subunits from type II PKSs; yellow, KSIII subunits from type II PKSs. See Table S4.

Table S4. Sequences used in Figure S4

Protein	Organism	GenBank accession no		Description
TcsB_KS- ${ }_{\text {derm }}$	Streptomyces sp. KCTC 11604BP	HM116537	$16 . .463$	
TcsB_KS- ${ }_{\text {term }}$	Streptomyces kanamyceticus KCTC 9225	HM116536	$16 . .463$	
TcsB_KS- ${ }_{\text {derm }}$	Streptomyces sp. ATCC 55098	HM116538	$16 . .463$	
TcsB_KS-c term	Streptomyces sp. KCTC 11604BP	HM116537	$477 . .796$	
TcsB_KS-c term	S. kanamyceticus KCTC 9225	HM116536	$477 . .796$	
TcsB_KS-c term	Streptomyces sp. ATCC 55098	HM116538	$477 . .796$	
AveAI	Streptomyces avermitilis	BAA84474	$483 . .913$	
EpoD	Sorangium cellulosum	AAF62883	3026.. 3452	
EryAII	Saccharopolyspora erythraea NRRL2338	CAM00064	$33 . .457$	
GdmAI	Streptomyces hygroscopicus	AAO06916	1103.. 1530	
LnmI	Streptomyces atroolivaceus	AAN85522	1931.. 2345	Type I KS
NidAIII	Streptomyces caelestis	AAC46026	$38 . .463$	
NysB	Streptomyces noursei ATCC 11455	AAF71775	44..464	
RifB	Amycolatopsis mediterranei	AAC01711	$37 . .462$	
TylG	Streptomyces fradiae	AAB66506	$45 . .469$	
MonAI	Streptomyces cinnamonensis	AAO65796	$19 . .426$	
NidAI	S. caelestis	AAC46024	$23 . .430$	
OleAI	Streptomyces antibioticus	AAF82408	$10 . .428$	Type I KS ${ }^{\text {Q }}$
TylG	S. fradiae	AAB66504	$45 . .451$	
ActI_ α subunit	Streptomyces coelicolor A3(2)	CAC44200	$1 . .467$	Type II KS
DpsA	Streptomyces peucetius	AAA65206	$1 . .419$	
FrnL	Streptomyces roseofulvus	AAC18107	$1 . .425$	
OxyA	Streptomyces rimosus	AAZ78325	$1 . .425$	
TcmK	Streptomyces glaucescens	AAA67515	$1 . .426$	

WhiE_ α subunit	Streptomyces coelicolor	P23155	$1 . .423$	
ZhuB	Streptomyces sp. R1128	AAG30189	$1 . .417$	
ActI_ β subunit	S. coelicolor A3(2)	CAC44201	$1 . .407$	
DpsB	S. peucetius	AAA65207	$1 . .425$	
FrnM	S. roseofulvus	AAC18108	$1 . .426$	Type II
OxyB	S. rimosus	AAZ78326	$1 . .422$	CLF
TcmL	S. glaucescens	AAA67516	$1 . .409$	
WhiE_ β subunit	S. coelicolor	P23156	$1 . .424$	
ZhuA	Streptomyces sp. R1128	AAG30188	$1 . .415$	
DpsC	S. peucetius	AAA65208	$1 . .353$	Type II
FrnI	S. roseofulvus	AAC18104	$1 . .336$	KSIII
ZhuH	Streptomyces sp. R1128	AAG30195	$1 . .339$	

Figure S5. Phylogenetic analysis of TcsCs and their signature motif. (a) Color codes used in this figure are: blue, crotonyl-CoA carboxylase/reductase (CCR); purple, butyryl-CoA/propionyl-CoA carboxylase; green, enoyl-ACP reductase; yellow, acetoacetyl-CoA reductase. (b) Sequence alignment of TcsCs with a group of CCRs

The $\operatorname{NADP}(\mathrm{H})$ binding site is framed in red. (c) $\operatorname{TcsC} \operatorname{NADP}(\mathrm{H})$ binding motif. A dominant motif, composed of 10 amino acid residues, is assigned with a group of CCRs as aligned, and the GXGXXAXXXA NADP(H) binding motif is conserved. See Table S5.

Table S5. Sequences used in Figure S5

Protein	Organism	GenBank accession no	Residues	Function
TcsC	Streptomyces sp. KCTC 11604BP	HM116537	445	
TcsC	Streptomyces kanamyceticus	HM116536	445	
	KСТС 9225			
TcsC	Streptomyces sp. ATCC 55098	HM116538	443	
CCR	Streptomyces lasaliensis	CAQ64684	454	Crotonyl CoA reductase
CCR	Streptomyces collinus	AAA92890	447	Crotonyl CoA reductase
CCR	Streptomyces cinnamonensis	AAD53915	453	Crotonyl CoA reductase
CCR	Streptomyces coelicolor A3(2)	CAA22721	447	Crotonyl-CoA
				carboxylase/reductase
CCR	Rhodobacter sphaeroides	ACJ71669	430	Crotonyl-CoA
				carboxylase/reductase
CCR	Methylobacterium extorquens	ACS38140	432	Crotonyl-CoA
	AM1			carboxylase/reductase
SalG	Salinispora tropica	ABP73651	460	Crotonyl-CoA
				carboxylase/reductase
PccA	M. extorquens AM1	ACS40950	667	
				carboxylase
PccB	M. extorquens AM1	ACS38134	510	Butyryl-CoA/propionyl-CoA
				carboxylase
FabI	Escherichia coli str. K-12 substr.	BAA14841	262	Enoyl-ACP reductase
	W3110			
FabL	Bacillus subtilis subsp. subtilis	CAB12693	250	Enoyl-ACP reductase
	str. 168			
FabV	Vibrio cholerae bv. albensis	ABX38717	401	Enoyl-ACP reductase

InhA	Mycobacterium tuberculosis	CAB02034	269	Enoyl-ACP reductase
	H37Rv			
FabK	Streptococcus pneumoniae	AAF98273	324	Trans-2-enoyl-ACP reductase
Etr1P	Candida tropicalis	Q8WZM3	386	Enoyl-ACP reductase
PhaB	M. extorquens AM1	AAK11537	242	Acetoacetyl-CoA reductase

Figure S6. Phylogenetic analysis of TcsDs and their sequence alignment. (a) Phylogenetic tree of the acyl-ACP or acyl-CoA dehydrogenase (DH) obtained by comparing the amino acid sequence of each TcsD derived from three 1-producing strains with those in the NCBI nr protein database. Acyl-ACP DHs are shown in blue and acyl-CoA DHs in black. (b) Sequence alignment of TcsDs along with acyl-ACP dehydrogenases (FabI and Asm15), as well as a group of acyl-coA DHs (ACADS_R, ACADSB, ACADM_P, and ACADM_H). Positions substituted with hydrophobic residues, which are commonly observed in acyl-ACP DHs (TcsD as well as FkbI and Asm15), are framed in red. See Table S6.

Table S6. Sequences used in Figure S6

Protein	Organism	GenBank accession no	Residues	Function
TcsD	Streptomyces sp. KCTC 11604BP	HM116537	386	
TcsD	Streptomyces kanamyceticus KCTC 9225	HM116536	386	
TcsD	Streptomyces sp. ATCC 55098	HM116538	386	
FkbI	Streptomyces hygroscopicus var. ascomyceticus ATCC 14891	AAF86388	366	Acyl-ACP dehydrogenase
Asm15	Actinosynnema pretiosum subsp. auranticum	AAM54093	357	Acyl-ACP dehydrogenase
ACADL	Homo sapiens (human)	P28330	430	Long chain-specific acylCoA dehydrogenase
ACADVL	Homo sapiens	P49748	655	Very long chain-specific acyl-CoA dehydrogenase
ACADM_H	Homo sapiens	P11310	421	Medium chain-specific acylCoA dehydrogenase
ACADM_P	Sus scrofa (pig)	AAW30430	421	Medium chain-specific acylcoA dehydrogenase
ACADS_H	Homo sapiens	P16219	412	Short chain-specific acylCoA dehydrogenase
ACADS_M	Megasphaera elsdenii	AAA03594	383	Short chain-specific acyl- CoA dehydrogenase
ACADS_R	Rattus norvegicus (Norway rat)	AAA40669	414	Short chain-specific acyl- CoA dehydrogenase
ACADSB	Homo sapiens	P45954	432	Short/branched chainspecific acyl-CoA

			dehydrogenase	
ACAD9	Homo sapiens	Q9H845	621	Acyl-CoA dehydrogenase family member 9
FadE	Escherichia coli K-12	Q47146	814	Acyl-CoA dehydrogenase
FadE12	Mycobacterium tuberculosis	P71539	388	Acyl-CoA dehydrogenase
GCDH	Homo sapiens	Q92947	438	Glutaryl-CoA dehydrogenase
IBD	Homo sapiens	Q9UKU7	415	Isobutyryl-CoA
				P26440
IVD	Homo sapiens	423	Isovaleryl-CoA	
				dehydrogenase

Table S7. Bacterial strains and plasmids used in this study

Strain/vector	Relevant characteristics	Reference
Bacterial strains		
Escherichia coli		
DH5 ${ }^{\text {a }}$	Host for general cloning	New England Biolabs
BL21(DE3)	Host for protein expression	Novagen
BL21(DE3)pLysS	Host for protein expression	Novagen
EPI300TM	Host for gene library construction	Epicentre Biotechnol.
ET12567/pUZ8002	Donor strain for intergeneric conjugation between E. coli and Streptomyces	MacNeil, D.J. et al. ${ }^{1}$
BL21 (DE3)pLysS/pTCSA-ACP	Strain for $\mathrm{ACP}_{\text {tcsA }}$ protein expression	This study
BL21(DE3)/pTCSC	Strain for TcsC protein expression	This study
BL21(DE3)pLysS/pSFP	Strain for Sfp (PPTase) protein expression	This study
Streptomyces		
ATCC 55098 (MA6858)	Wild-type FK506 (1)-producing strain	Motamedi, H. et al. ${ }^{2}$
KCTC 11604BP	Wild-type 1-producing strain	This study
KСTC 9225	Wild-type 1-producing strain	Muramatsu, H. et al. ${ }^{3}$
ATCC 14891	Wild-type FK520 (2)-producing strain	Wu, K. et al. ${ }^{4}$
$\Delta \mathrm{tcsA}$	Mutant of KCTC 11604BP with an in-frame deletion of tcsA, produces 2 \& FK523 (12)	This study
$\Delta \mathrm{tcsB}$	Mutant of KCTC 11604BP with an in-frame deletion of tcsB, produces $\mathbf{2}$ \& $\mathbf{1 2}$	This study
$\Delta \mathrm{tcsC}$	Mutant of KCTC 11604BP with an in-frame deletion of tcs C, produces $\mathbf{2}$ \& $\mathbf{1 2}$	This study
$\Delta \mathrm{tcsD}$	Mutant of KCTC 11604BP with an in-frame deletion of tcsD, produces 2 \& dihydro-FK506 (18)	This study

$\Delta \mathrm{tcs} 1$	Mutant of KCTC 11604BP with an in-frame deletion of tcsl, produces $\mathbf{1}$ \& $\mathbf{2}$	This study
$\Delta \mathrm{tcs} 2$	Mutant of KCTC 11604BP with an in-frame deletion of tcs2, produces $\mathbf{1}$ \& $\mathbf{2}$	This study
$\Delta \mathrm{tcs} 3$	Mutant of KCTC 11604BP with an in-frame deletion of tcs 3 , produces $\mathbf{1}$ \& $\mathbf{2}$	This study
$\Delta \mathrm{tcs} 4$	Mutant of KCTC 11604BP with an in-frame deletion of tcs 4 , produces $\mathbf{1}$ \& 2	This study
$\Delta \mathrm{tcs} 5$	Mutant of KCTC 11604BP with an in-frame deletion of tcs5, produces $\mathbf{1}$ \& $\mathbf{2}$	This study
$\triangle \mathrm{fkbA}$	Mutant of KCTC 11604BP with an in-frame deletion of $f k b A$, does not produce $\mathbf{1}$ or $\mathbf{2}$	This study
S. lividans TK24	Host for protein expression	Walczak, R.J. et al ${ }^{5}$
S. lividans TK24/pTCSD	TK24 mutant, expresses heterologous $t c s D$ using pTCSD	This study
Plasmids		
pCCFOS1 (fosmid)	Vector for genomic library construction	Epicentre Biotechnol.
Litmus 28	Multi-purpose E. coli cloning vector	New England Biolabs
pGEM-Teasy	PCR fragment cloning vector	Promega
pKC1139	High-copy-number temperature-sensitive E. coli-Streptomyces shuttle vector	Bierman, M. et al. ${ }^{6}$
pET15b, pET28a	E. coli protein expression vector	Novagen
pGF101	Sfp expression plasmid based on $\mathrm{pET30a}(+)$	Zhou, P. et al. ${ }^{7}$
pSE34	pWHM 3 with $\mathrm{P}_{\text {ermE* }}$ promoter	Yoon, Y.J. et al. ${ }^{8}$
p \triangle TCSA	Deletion plasmid with in-frame deletion of 1,287-bp internal tcsA fragment	This study
$\mathrm{p} \triangle$ TCSB	Deletion plasmid with in-frame deletion of 2,088-bp internal tcsB fragment	This study
p \triangle TCSC	Deletion plasmid with in-frame deletion of 1,041-bp internal $\operatorname{tcs} C$ fragment	This study
$\mathrm{p} \triangle$ TCSD	Deletion plasmid with in-frame deletion of 1,152-bp internal tcsD fragment	This study
p 4 TCS 1	Deletion plasmid with in-frame deletion of 1,110-bp internal tcsl fragment	This study

p Δ TCS2	Deletion plasmid with in-frame deletion of 171 -bp internal $t c s 2$ fragment	This study
p Δ TCS3	Deletion plasmid with in-frame deletion of 1,209 -bp internal $t c s 3$ fragment	This study
p Δ TCS 4	Deletion plasmid with in-frame deletion of 864 -bp internal $t c s 4$ fragment	This study
p Δ TCS5	Deletion plasmid with in-frame deletion of 666 -bp internal $t c s 5$ fragment	This study
p 4 FKBA	Deletion plasmid with in-frame deletion of 18,171 -bp internal $f k b A$ fragment	This study
pTCSC	N, C-terminal His $_{6}$-tagged TcsC expression plasmid based on pET28a(+)	This study
pTCSA-ACP	N-terminal His $_{6}$-tagged ACP $_{\text {tcsA }}$ expression plasmid based on pET15b(+)	This study
pSFP	N-terminal His $_{6}$-tagged Sfp expression plasmid based on pET15b(+)	This study
pTCSD1	N-terminal His $_{6}$-tagged plasmid based on pET15b(+), contains $t c s D$ ORF	This study
pTCSD	N-terminal His $_{6}$-tagged TcsD expression plasmid based on pSE34	This study

Fosmid clones

From KCTC 11604BP		This study
fos1004F01	Fosmid clone, contains bases 1-40,366 of FK506 biosynthetic gene cluster	This study
fos1005D02	Fosmid clone, contains bases $39,116-80,661$ of FK506 biosynthetic gene cluster	This study
fos1006D05	Fosmid clone, contains bases 58,172-97,743 of FK506 biosynthetic gene cluster	
From KCTC 9225	Fosmid clone, contains bases 1-35,521 of FK506 biosynthetic gene cluster	This study
fos1006G02	Fosmid clone, contains bases 31,026-67,758 of FK506 biosynthetic gene cluster	This study
fos1012A09	Fosmid clone, contains bases 41,430-85,253 of FK506 biosynthetic gene cluster	This study
fos1004E04	Fosmid clone, contains bases 76,978-111,990 of FK506 biosynthetic gene cluster	This study
fos1010E10		Fosmid clone, contains bases 1-41,779 of FK506 biosynthetic gene cluster

fos 1010 H 09	Fosmid clone, contains bases 9,843-44,811 of FK506 biosynthetic gene cluster	This study
fos 1012 B 03	Fosmid clone, contains bases 27,398-72,806 of FK506 biosynthetic gene cluster	This study
fos 1001 F 05	Fosmid clone, contains bases 59,900-95,979 of FK506 biosynthetic gene cluster	This study

Table S8. Primers used in this study

Primer	Sequence 5' to 3' (restriction site underlined)	Restriction enzyme
TcsALF	TTTAAGCTTCCGTCGGATCGGGGCGGCAG	HindIII
TcsALR	AAAGGATCCGAAGAGGAACGCCACCCCAC	BamHI
TcsARF	TTTAGATCTTGATCCGGTCGTGATCTCCC	BglII
TcsARR	AAAGAATTCGTCGCCGGGCAGGTGCGC	EcoRI
TcsBLF	GACAAGCTTATGCTGGCGGTGAAGGCG	HindIII
TcsBLR	CCGTCTAGACCAGAAGGAATCGAGCCGGAA	$X b a \mathrm{I}$
TcsBRF	CAGTCTAGAGTGATCCGTGCCCTGCACTCC	$X b a \mathrm{I}$
TcsBRR	GCCGAATTCGATGACGATGTCCGGGTCG	EcoRI
TcsCLF	TTTAAGCTTAACAAGTCCCTGCTCGGTCA	HindIII
TcsCLR	AACGGATCCGTCTTCGACGGGGCTCCCGG	BamHI
TcsCRF	AAAAGATCTTCCCGGGTCTACCCCCTCGA	BglII
TcsCRR	TTTGAATTCCTCACCCAGGCCCTGACGC	EcoRI
TcsDLF	GCTAAGCTTCTCAGGCGTCTGCGGATGC	HindIII
TcsDLR	ATCGGATCCTTCGCTCACCGGGGCTGCC	BamHI
TcsDRF	AGCAGATCTGGCATGTTCTGGTCAGTCC	BglII
TcsDRR	GTCGAATTCCATGCCACGAACGGGTCGA	EcoRI
Tcs1LF	TATAAGCTTACTCGTCGCACGCGGCAGC	HindIII
Tcs1LR	ATATCTAGACTCACCCAGGCCCTGACGC	XbaI
Tcs1RF	ATATCTAGACCAGTGATGCGAAGGCATG	XbaI
Tcs1RR	GACGAATTCCAGGAGGTTGACGGTGGTT	EcoRI
Tcs2LF	ATTAAGCTTGGGCGAACTCCTCGTTCG	HindIII
Tcs2LR	ATTTTTGGATCCCGCACGAGTCTCGGG	BamHI
Tcs2RF	GACGGATCCTCTGAATCGGAGATTCGT	BamHI

Tcs2RR	TTAGAATTCGTGGCCGTTGGAGATGAA	EcoRI
Tcs3LF	AGCAAGCTTAGTCCTCTGAGGAGCTGGTAG	HindIII
Tcs3LR	TCGAGATCTCACGAGGTCTCCTTGGAGACA	BglII
Tcs3RF	AAAGGATCCGTCATCATCGACCCGTAG	BamHI
Tcs3RR	TTTGAATTCTCCTTGCTGGTCTGGACG	EcoRI
Tcs4LF	TTTAAGCTTCGGCGTGGAGGCGTGGTCG	HindIII
Tcs4LR	AAAGGATCCCGTGAGGCCCTCGGCGACA	BamHI
Tcs4RF	AAAGGATCCGACGAGGTGGACTCCCACG	BamHI
Tcs4RR	TTTGAATTCCCAGCACCCTGTCGTCCCG	EcoRI
Tcs5LF	CCGAAGCTTACAGCACGGGGATACTCTG	HindIII
Tcs5LR	GGATCTAGACAGCCGTTCGGCGATCGCG	XbaI
Tcs5RF	AAATCTAGAATGCGCTGACGCGGCCCCG	XbaI
Tcs5RR	TTTGGATCCACGGTCGACTCACGCCGCC	BamHI
FkbDF	GAGCGGCACGGTS(C/G)GGY(C/T)TCG	For fosmid selection
FkbDR	CGGGCAGCATCTCGGACGG	For fosmid selection
FkbOF	TGGGCCCGCACCGN(A/C/G/T)CGACCTGTT	For fosmid selection
FkbOR	GGCGATGTTGTCCAGGGCGACN(A/C/G/T)TCGC	For fosmid selection
FkbALF	GTTACCAAGCTTGTACCGAGGACCACGTAC	HindIII
FkbALR	GAATCCGGATCCGACCGT TTTGTCCTGTTC	BamHI
FkbARF	TTTACCGGATTCTTCACCGGCTCCACCGAT	BamHI
FkbARR	GGGTCCTCTAGAAGAGAGTGTCGAGGAGATCG	XbaI
TcsCF	ATTAGGATCCATGACCCACGTTCGCGA	BamHI
TcsCR	TATATACTCGAGCCGGGGCTGCCCCTT	XhoI
TcsAF	CATATGACCAGTGGGGTGGCGTTC	$N d e \mathrm{I}$
TcsAR	GGATCCTCACCGCCGCCCGGA	BamHI

SfpF	ATACATATGAAGATTTACGGAATTTATATGGACC	Nde I
SfpR	ATAGGA TCCTTATAAAAGCTCTTCGTACGA	Bam HI
TcsDF	TTAACCCATATGAGCGAATCCGAACGCC	
TcsDR	TATTCTCGAGCTAGGTACGTTTCGCGGT	Nde I
		XhoI

Figure S7. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic 3-oxopentanoyl-SNAC (13) thioester. See Supporting Methods for the detailed synthesis.

Figure S8. ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic 3-oxopentanoyl-SNAC (13) thioester. See Supporting Methods for the detailed synthesis.

Figure S9. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic trans-2-pentenyl-SNAC (14) thioester. See Supporting Methods for the detailed synthesis.

Figure S10. ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic trans-2-pentenyl-SNAC (14) thioester. See Supporting Methods for the detailed synthesis.

Figure S11. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic pentanoyl-SNAC (15) thioester. See Supporting Methods for the detailed synthesis.

Figure S12. ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic pentanoyl-SNAC (15) thioester. See Supporting Methods for the detailed synthesis.
(

Figure S13. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic allylmalonyl-SNAC (16) thioester. See Supporting Methods for the detailed synthesis.

Figure S14. ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic allylmalonyl-SNAC (16) thioester. See Supporting Methods for the detailed synthesis.

Figure S15. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic propylmalonyl-SNAC (17) thioester. See Supporting Methods for the detailed synthesis.

Figure S16. ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of the synthetic propylmalonyl-SNAC (17) thioester. See Supporting Methods for the detailed synthesis.

Figure S17. ${ }^{13} \mathrm{C}$ enrichment of FK506 (1), FK520 (2), and FK523 (12). ${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectra of $\mathbf{1}(\mathbf{a}), \mathbf{2}$ (b), and $\mathbf{1 2}$ (c). \% incorporation = (A-B)/B where $\mathrm{A}=$ intensity of enriched carbon and $\mathrm{B}=$ intensity of natural abundance carbon (see Supporting Methods).

Figure S18. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) spectrum of the synthetic trans-2-pentenyl-CoA (11). See Supporting Methods for the detailed synthesis. " X " indicates the presence of impurities.

Figure S19. HPLC-ESI-MS/MS analysis of CoA-esters obtained from in vitro reactions using recombinant TcsC and TcsD. (a) Chromatograms of TcsC-catalyzed production of ethylmalonyl-CoA (7) and propylmalonyl-CoA (8), supplemented with crotonyl-CoA (10) and trans-2-pentenyl-CoA (11), respectively. No product was detected when TcsD was incubated with $\mathbf{1 1}$ (upper chromatogram). Tracing of CoA-esters was done in multiple reactions monitoring mode by selecting mass transit from the protonated molecular ion to the specific fragmented product ion: $882>375$ for $7 ; 896>389$ for $\mathbf{8 ;} 836>$ 329 for $\mathbf{1 0}$; and $850>343$ for $\mathbf{1 1}$, as previously described ${ }^{9}$. (b) ESI-MS/MS fragmentation pattern of $\mathbf{7}$ and its MS/MS spectra obtained from the TcsC reactions with 10. (c) ESI-MS/MS fragmentation pattern of $\mathbf{8}$ and its MS/MS spectra obtained from the reactions of TcsC with $\mathbf{1 1}$.

Figure S20. HPLC-ESI-MS/MS analysis of intracellular CoA-esters obtained from 3-day cultures of wild-type FK506-producing Streptomyces sp. KCTC 11604BP and FK520-producing S. hygroscopicus var. ascomyceticus ATCC 14891 strains. (a) Chromatograms of intracellular CoA-esters extracted from both strains and the authentic synthesized allylmalonyl-CoA (9). Tracing of CoA-esters was done in multiple reactions monitoring mode by selecting mass transit from the protonated molecular ion to the specific fragmented product ion: $868>361$ for methylmalonyl-CoA (6); $882>375$ for ethylmalonyl-CoA (7); $896>389$ for propylmalonyl-CoA (8); and $836>329$ for 9 , as previously described ${ }^{9}$. (b) ESIMS/MS fragmentation pattern of $\mathbf{9}$ and its MS/MS spectra obtained from KCTC 11604BP.

Figure S21. ${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}$) spectrum of the synthetic allylmalonyl-CoA (9). See Supporting Methods for the detailed synthesis.
a

b
23

Figure S22. ESI-MS/MS analysis of 36,37-dihydro-37-methyl-FK506 (23) obtained from the tcsB deletion mutant of Streptomyces sp. KCTC 11604BP (Δ tcsB strain) supplemented with trans-2-hexenoic acid (20). (a) ESI-MS/MS fragmentation pattern of 23. (b) MS/MS spectra of 23. Structural estimation of FK506 congeners produced by the same strain was carried out as previously described ${ }^{10}$.
a

Figure S23. ESI-MS/MS analysis of a novel FK506 analog, 36-methyl-FK506 (24) obtained from the tcsB deletion mutant of Streptomyces sp. KCTC 11604BP (Δ tcsB strain) supplemented with 4methylpentanoic acid (21). (a) ESI-MS/MS fragmentation pattern of 24. (b) MS/MS spectra of 24. Structural estimation of FK506 congeners produced by the same strain was carried out as previously described ${ }^{10}$.

Figure S24. ${ }^{1} \mathrm{H}$ NMR ($900 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 36-methyl-FK506 (24). "*" indicates the coexistence of tautomer.

Figure S25. ${ }^{13} \mathrm{C}$ NMR ($225 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 36-methyl-FK506 (24). "*" indicates the coexistence of tautomer.

Figure S26. 2D ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of 36-methyl-FK506 (24).

Figure S27. 2D HMQC NMR spectrum of 36-methyl-FK506 (24).

Figure S28. 2D HMBC NMR spectrum of 36-methyl-FK506 (24).

Table S9. NMR data for the novel FK506 analog 36-methyl-FK506 (24)

Position	C	H	COSY correlations	HMBC correlations
1	169.08	-		
2	56.62	4.61	H-3b	C-1, 3, 4
3	27.56	2.08	H-3b	
		1.94	H-4b	
4	21.06	1.75	H-4b	C-3, 6
		1.39		
5	24.47	1.75	H-5b	C-3, 6
		1.47	H-4b	
6	39.30	4.43	H-5a/b, H-6b	C-2, 4, 5, 8
		3.03	H-5a/b	C-2, 8
7	-	-		
8	164.70	-		
9	196.14	-		
10	97.19	-		
11	34.60	2.19	H-12b, 38	
12	32.68	2.14		C-13
		1.47		C-11, 13
13	73.57	3.40	H-12a/b	
14	72.85	3.68	H-13, 15	C-10, 12, 13, 15
15	75.21	3.58	H-16a/b	
16	33.15	1.53	H-16b	
		1.07		
17	26.00	1.68	H-16a/b, 39	C-19
18	48.66	2.14	H-17, 18b	C-16, 17, 19, 20, 39, 40
		1.80		C-16, 17, 19, 20, 39, 40
19	138.82	-		
20	122.86	5.02	H-21	C-18, 21, 35, 40
21	51.61	3.55	H-35a/b	C-19, 20, 22, 35, 36

22	212.42	-		
23	43.69	2.78	H-23b	C-22, 24, 25
		2.16		C-21, 22
24	69.89	3.95	H-23a/b, 25	C-26
25	39.77	1.89	H-41	C-24, 41
26	77.68	5.33	H-25	C-24, 25, 27, 28, 41, 42
27	132.19	-		
28	129.90	5.10	H-29	C-26, 29, 30, 34, 42
29	34.89	2.31	H-30b, 34a	
30	34.82	2.02		C-28, 31
		0.96		C-28, 29, 31, 32, 34
31	84.17	3.02	H-30a/b	C-32, 45
32	73.69	3.42	H-31, 33b	C-31, 33
33	31.20	2.02	H-33b, 34a	
		1.37	H-34b	C-32
34	30.63	1.64		C-28, 29, 30
		1.08		
35	38.98	2.50		C-36methyl, 20, 21, 22, 36, 37
		2.09		C-36methyl, 20, 21, 22, 36, 37
36	143.00	-		
37	112.06	4.76		C-36
		4.66		
38	16.24	1.00		C-10, 12
39	20.37	0.93		C-16, 17, 18
40	15.94	1.61		C-18, 19, 20
41	9.45	0.88		C-24, 25, 26
42	14.13	1.64		C-26, 27, 28
43	56.31	3.42		C-13
44	57.06	3.31		C-15
45	56.58	3.42		C-31
36-methyl	22.77	1.72		C-36

Figure S29. ESI-MS/MS analysis of a novel FK506 analog, 36-fluoro-FK520 (25) obtained from the tcsB deletion mutant of Streptomyces sp. KCTC 11604BP (Δ tcsB strain) supplemented with 4-fluorocrotonic acid (22). (a) ESI-MS/MS fragmentation pattern of 25. (b) MS/MS spectra of 25. Structural estimation of FK506 congeners produced by the same strain was carried out as previously described ${ }^{10}$.

Figure S30. ${ }^{1} \mathrm{H}$ NMR ($900 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 36-fluoro-FK520 (25). "*" indicates the coexistence of tautomer.

Figure S31. ${ }^{13} \mathrm{C}$ NMR ($225 \mathrm{MHz}, \mathrm{CDCl}_{3}$) spectrum of 36-fluoro-FK520 (25).

Figure S32. $2 \mathrm{D}{ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY NMR spectrum of 36 -fluoro-FK520 (25).

Figure S33. 2D HMQC NMR spectrum of 36-fluoro-FK520 (25).

Figure S34. 2D HMBC NMR spectrum of 36-fluoro-FK520 (25).

Figure S35. ${ }^{19}$ F NMR spectrum of 36-fluoro-FK520 (25).

Table S10. NMR data for the novel FK506 analog 36-fluoro-FK520 (25)

Position	C	H	COSY correlations	HMBC correlations
1	168.84	-	-	
2	56.61	4.65	H-3a/b	C-1, 3, 4, 6, 8
3	27.71	2.09	H-2, 3b, 4a	
		1.98	H-2, 4a/b	C-1, 2
4	21.15	1.75	H-3a, 4b, 5b	C-2, 3, 6
		1.40	H-3a/b, 4a, 5a/b	
5	24.55	1.75	H-4b, 5b, 6a/b	C-3, 6
		1.47	H-4a, 5a, 6a/b	
6	39.29	4.45	H-5a/b	C-2, 8, 4, 5
		3.02	H-5a/b	C-2, 8
7	-	-		
8	164.45	-		
9	195.88	-		
10	97.04	-		
11	34.63	2.16	H-12b	C-10
12	32.60	2.16		C-13
		1.50		C-11, 13
13	73.55	3.41	H-12a/b	
14	72.65	3.75	H-13, 15	C-10, 12, 13, 15
15	75.12	3.62	H-16a/b	C-16
16	33.02	1.63	H-16b	C-14
		1.10		C-14, 15, 17
17	25.98	1.79		C-16, 19, 38
18	48.23	2.16	H-17	C-17,19
		1.81		C-16, 17, 19, 20, 39, 38
19	139.77	-		
20	121.23	5.10	H-21	C-18, 21, 22, 35, 39
21	48.40	3.58	H-20, 35	C-19, 20, 22, 35, 36

22	212.91	-		
23	43.02	2.86	H-23b, 24	C-22, 24, 25
		2.08	H-23a, 24	C-22, 24
24	70.19	3.91	H-23a/b, 25	C-26
25	39.94	1.90	H-24, 26	C-24, 40
26	76.67	5.34	H-25	C-24, 25, 27, 28, 40, 41
27	132.44	-		
28	129.48	5.10	H-29	C-26, 27, 29, 30, 34, 41
29	34.87	2.29	H-30a/b, 34a/b	
30	34.84	2.04	H-29, 31	
		0.97	H-29, 30a, 31	C-28, 29, 31, 32, 34
31	84.15	3.02	H-30a/b, 32	C-32, 44
32	73.51	3.41	H-31, 33a/b	C-31
33	31.18	2.00	H-32, 33b, 34a	
		1.38	H-32, 33a, 34a/b	C-29, 32, 34
34	30.62	1.64	H-29, 33a/b, 34b	C-28, 29, 30
		1.06	H-29, 33a/b	
35	31.05	2.25	H-36	C-20, 21, 22, 36
36	81.57	4.42	H-35	C-21
37	16.28	1.01	H-11	C-10, 11, 12
38	20.45	0.95	H-17	C-16, 17, 18
39	15.95	1.60		C-18, 19, 20
40	9.56	0.87	H-25	C-24, 25, 26
41	14.20	1.65		C-26, 27, 28
42	56.27	3.40		C-13
43	56.61	3.32		C-15
44	56.60	3.42		C-31

Figure S36. Snapshots of the average structure of the binding sites in 3-dimensional docking models. (a) Calcineurin A (CnA)-Calcineurin B (CnB)-FK506 (1), (b) CnA-CnB-FK520 (2), (c) CnA-CnB-36-methyl-FK506 (24), and (d) CnA-CnB-36-fluoro-FK520 (25) during 10-ns molecular dynamics simulation. The average distances between the oxygen atom of Ser353 in CnA and C-37 of $\mathbf{1}$ (purple dash) and $\mathbf{2 4}$ (green dash) in the simulated complex were 2.983 and $2.784 \AA$, respectively. The side chains of $\mathbf{1}$ and its analogs are shown in dark slate blue and the fluorine atom in $\mathbf{2 5}$ is shown in cyan. The dotted circles represent the orientation of Ser353 in CnA.

Table S11. Binding free energies of calcineurin-FKBP12 complex with $\mathbf{1}$ and its analog

Compound	$\Delta \mathbf{G}_{\text {elec }}$	$\Delta \mathbf{G}_{\text {vdw }}$	$\Delta \mathbf{G}_{\text {nonpol, sol }}$	$\Delta \mathbf{G}_{\text {elec, } \text { sol }}$	$-\mathbf{T} \Delta \mathbf{S}$	$\Delta \mathbf{G}_{\text {bind }}$
$\mathbf{1}$	-11.83 ± 0.12	-25.08 ± 0.09	-2.93 ± 0.01	21.53 ± 0.09	12.61 ± 0.41	-6.42 ± 0.05
$\mathbf{2}$	-14.36 ± 0.13	-23.53 ± 0.10	-3.03 ± 0.01	23.13 ± 0.06	11.76 ± 0.56	-6.03 ± 0.05
$\mathbf{2 4}$	-12.20 ± 0.12	-25.45 ± 0.09	-2.90 ± 0.01	20.40 ± 0.08	12.37 ± 0.54	-7.78 ± 0.04
$\mathbf{2 5}$	-11.75 ± 0.07	-24.78 ± 0.09	-3.05 ± 0.01	21.45 ± 0.08	12.31 ± 0.56	-5.82 ± 0.09

1: FK506, 2: FK520, 24: 36-methyl-FK506, 25: 36-fluoro-FK520. The binding free energies were based on molecular dynamics simulation. All energies are given in units of kcal $/ \mathrm{mol} . \Delta \mathrm{G}_{\text {elec }}, \Delta \mathrm{G}_{\mathrm{vdw}}, \Delta \mathrm{G}_{\text {nonp } / \mathrm{sol}}$, $\Delta \mathrm{G}_{\text {elec/sol }}, \Delta \mathrm{G}_{\text {bind }}$ represent electrostatic, van der Waals, nonpolar solvation, electrostatic solvation, and binding free energies, respectively. The uncertainties are the standard error of the mean calculated with 200 snapshots (50 snapshots for entropic calculations).

Figure S37. Representative micrographs of SH-SY5Y neuroblastoma cells. Untreated cells (a), cells treated with NGF alone (b), and cells treated with NGF in the presence of $\mathbf{1}(\mathbf{c}), \mathbf{2}(\mathbf{d}), 24$ (e) and $\mathbf{2 5}(\mathbf{f})$ at a concentration of 1 nM after 96 h of cultivation. Neurite processes are longer in treated cells, with the exception of those treated with 2 (d), compared with those treated with NGF alone (b) (see Supporting Methods).

b

Signature motif	1	11	III
FkbB_AT4_KCTC 11604BP	RVDVVH	GHSQGE	CPTH
FbkB_AT4_KCTC 9225	RVDVVH	GHSQGE	CPTH
emFkbB_AT4	RVDVVH	GHSQGE	CPTH
emNidAIII_AT5	RVDVVQ	GHSQGE	TAGH
emTylG_AT5	RVDVVQ	GHSQGE	tagh
mAveAI_AT2	QTRYAQ	GHSLGE	HAFH
mEpoA_AT0	QTAFTQ	GHSIGE	HAFH
mFkbA_AT10	DTLYAQ	GHSVGE	HAFH
mGdmAIII_AT6	RTEFTQ	GHSIGE	HAFH
mHbmAIII_AT6	RTEFTQ	GHSIGE	HAFH
mNidAI_AT1	RTEYTQ	GHSVGE	HAFH
mNysC_AT3	DTGWAQ	GHSIGE	HAFH
mPimSI_AT3	QTAYAQ	GHSIGE	HAFH
mRapA_AT2	ETGYAQ	GHSVGE	HAFH
mRifA_AT2	QTMYTQ	GHSIGE	HAFH
mSorA_AT2	QTAFTQ	GHSIGE	HAFH
mmAveAII_AT6	QADVVQ	GHSQGE	YASH
mmEryAI_AT1	RVEVVQ	GHSIGE	MAAH
mmEpoc_AT1	RIDVVQ	GHSMGE	VASH
mmFkbC_AT5	RVEVVQ	GHSQGE	YASH
mmGdmAI_AT1	RVDVVQ	GHSQGE	YASH
mmHdmAI_AT1	RVDVVQ	GHSQGE	YASH
mmNidAIII_AT4	RVDVVQ	GHSQGE	YASH
mmNysB_AT2	RVDVVQ	GHSQGE	Yash
mmPimSII_AT7	RVDVVQ	GHSQGE	YASH
mmRapB_AT6	RVDVVQ	GHSQGE	YASH
mmRifB_AT4	RVDVVQ	GHSQGE	YASH
mmSorB_AT5	RVDVVQ	GHSQGE	YASH
mmStid_AT4	RVEVVQ	GHSMGE	VASH
moFkbA_AT7	THFAHQ	GHSLGE	hage
moGdmAII_AT5	RVDVLQ	GHSQGE	FAGH
moHbmAII_AT5	RVDVLQ	GHSQGE	FAGH
moNidAIV_AT6	RADVVQ	GHSQGE	FAGH
moSorA_AT3	RIEVVG	GHSQGE	VASH
dmDszD	QTQFTQ	GHSLGE	AAFH
dmFenF	RTMNAQ	GHSLGE	APFH
dmLnmG	RTEYAQ	GHSLGE	AAFH
dmMmpIII_AT2	QTRFTC	GHSLGE	APFH
dmPedD	LTQYtQ	GHSLGE	GAHE

Figure S38. Phylogenetic analysis of module4 AT domains and their signature motifs. (a) Phylogenetic tree of the acyl transferase (AT) domains obtained by comparing the amino acid sequence of each module 4 AT domain derived from two 1-producing strains with those in the NCBI nr protein database. (b) Module 4 AT domain signature motifs. Three dominant motifs, containing of 6,6 , and 4 amino acid residues, are assigned with a group of ATs. Color codes used in this figure are: purple, ethylmalonyl (em)-specific AT domain; blue, malonyl (m)-specific AT domain; green, methylmalonyl (mm)-specific AT domain; orange, methoxylmalonyl (mo)-specific AT domain; and yellow, discrete malonyl (dm)-specific AT domain.

Supporting Methods

Materials, bacterial strains, and culture conditions. FK506 (1), FK520 (2), ethylmalonyl-CoA (7), propylmalonyl-CoA (8), crotonyl-CoA (10), [1- $\left.{ }^{13} \mathrm{C}\right]$ pentanoic acid (19), trans-2-hexenoic acid (20), 4methylpentanoic acid (21), trans-2-pentenoic acid, diethyl propylmalonic acid, nicotinamide adenine dinucleotide phosphate (NADPH), ampicillin, apramycin, chloramphenicol, kanamycin, and nalidixic acid were purchased from Sigma. Ammonium acetate and allylmalonic acid were purchased from Fluka, and HPLC-grade acetonitrile, methanol, glacial acetic acid, and water were supplied by J.T. Baker. 4Fluorocrotonic acid (22) was chemically synthesized as previously described ${ }^{11}$. A Copy Control Fosmid construction kit was purchased from Epicentre Biotechnologies. His-Bind nickel chelate chromatography resin was obtained from Novagen. Restriction endonucleases and T4 DNA ligase were purchased from New England Biolabs. Polymerase chain reactions were carried out using Taq DNA polymerase from Stratagene. All other chemicals were of the highest purity available. For NMR characterization of FK506 congeners and their analogs obtained from the culture media, samples purified via reversed-phase HPLC were prepared by dissolving each compound in $250 \mu 1$ of CDCl_{3} (Sigma) and placing the solution in a 5 mm Shigemi advanced NMR microtube (Sigma) matched to the solvent. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C},{ }^{19} \mathrm{~F}$, and 2D NMR spectra were acquired using a Bruker 9503DPX, Bruker DRX 300, Varian INOVA 500 and Bruker Avance II 900 spectrometer at 298 K . Chemical shifts are given in ppm using tetramethylsilane (TMS) as an internal reference. All NMR data processing was done using the Mnova (Mestrelab Research S.L.) software.

Bacterial strains used in this study are listed in Table S7. The 1-producing strains Streptomyces sp. KCTC 11604BP and Streptomyces kanamyceticus KCTC 9225 were obtained from GenoTech (Daejeon, Republic of Korea) and the Korean Collection for Type Cultures (Republic of Korea), respectively. The 2-producing Streptomyces hygroscopicus var. ascomyceticus ATCC 14891 and 1producing Streptomyces sp. ATCC 55098 were obtained from the American Type Culture Collection (USA). Spores of Streptomyces sp. KCTC 11604BP, its gene deletion mutants, and S. kanamyceticus

KCTC 9225 were generated on ISP4 agar plates ${ }^{12}$ and a seed culture was prepared in R2YE broth ${ }^{13}$. Fifty miligrams of vegetative cells grown in the seed culture were inoculated into a $250-\mathrm{ml}$ baffled flask containing 50 ml of R2YE medium and cultivated on an orbital shaker (set at 180 rpm) for 6 d at $28^{\circ} \mathrm{C} . S$. hygroscopicus var. ascomyceticus ATCC 14891 was incubated in a baffled 250-ml flask containing 50 ml of SY medium ${ }^{14}$ and grown on an orbital shaker for 6 d at $30^{\circ} \mathrm{C}$. Streptomyces lividans TK24, which was used as a heterologous host for preparing recombinant TcsD, was grown in YEME liquid medium ${ }^{13}$. Escherichia coli $\mathrm{DH} 5 \alpha^{15}$ was used for routine subcloning, while E. coli $\mathrm{BL} 21(\mathrm{DE} 3)$ and E. coli BL21(DE3)pLysS (Novagen) were used as heterologous hosts for expression of recombinant TcsC and $\mathrm{ACP}_{\text {tcsA. }}$. E. coli $\mathrm{ET} 12567 / \mathrm{pUZ8002}$ was the nonmethylating plasmid donor strain ${ }^{1}$ for intergeneric conjugation with Streptomyces sp. KCTC 11604BP. The E. coli strains were grown in LB, SOB or SOC liquid medium ${ }^{15}$. Ampicillin $(100 \mu \mathrm{~g} / \mathrm{ml})$, apramycin $(50 \mu \mathrm{~g} / \mathrm{ml})$, chloramphenicol $(25 \mu \mathrm{~g} / \mathrm{ml})$, kanamycin ($50 \mu \mathrm{~g} / \mathrm{ml}$), thiostrepton $(25 \mu \mathrm{~g} / \mathrm{ml})$, and nalidixic acid $(25 \mu \mathrm{~g} / \mathrm{ml})$ were selectively added to the growth media as required.

Identification and sequencing of the FK506 gene cluster. The genomic DNAs of Streptomyces sp. KCTC 11604BP, S. kanamyceticus KCTC 9225, and Streptomyces sp. ACTC 55098 were isolated using standard procedures ${ }^{13}$ and size-fractionated through an agarose gel by pulsed field gel electrophoresis. Fragments approximately 40 kb in size were excised, recovered from the gel, and then cloned into the pCCFOS1 fosmid vector using the Copy Control Fosmid construction kit according to the manufacturer's protocols. The fosmid library was screened by end sequencing with $\mathrm{pCC1} / \mathrm{pEpiFOS}$ forward and reverse primers, then the sequences of selected fosmids were determined by PCR analysis using FK506-specific primers. The PCR primer pairs (FkbDF/FkbDR and FkbOF/FkbOR) were designed based on the conserved sequences found in Streptomyces sp. ATCC 53770 (GenBank accession no. U65940.1) and S. hygroscopicus var. ascomyceticus ATCC 14891 (GenBank accession no. AF235504.1) (see Table S3).The PCR products were analyzed on an ABI PRISM 3700 automated sequencer (Applied Biosystems). The raw sequence data were processed and assembled with Management and Analysis for

Polyketide Synthase Type I (MAPSI) software ${ }^{16}$. Annotation analysis of the sequence data was performed through database comparison with the Basic Local Alignment Search Tool (BLAST) server of the National Center for Biotechnology Information (NCBI) ${ }^{17}$.

Chemical synthesis of 3-oxopentanoyl-SNAC thioester (13). Pyridine ($4.88 \mathrm{ml}, 60 \mathrm{mmol}$) was added to a solution of Meldrum's acid (13a; $4.33 \mathrm{~g}, 30 \mathrm{mmol}$) in dichloromethane ($\mathrm{MC} ; 30 \mathrm{ml}$) at $0^{\circ} \mathrm{C}$. A solution of propionyl chloride $\left(\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{COCl} ; 2.78 \mathrm{~g}, 30 \mathrm{mmol}\right)$ in $\mathrm{MC}(30 \mathrm{ml})$ was then added dropwise to this solution. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h and warmed to room temperature, then stirred for 20 h . The reaction mixture was washed with $2 \mathrm{~N} \mathrm{HCl}(3 \times 40 \mathrm{ml})$, dried over MgSO_{4} and concentrated in vacuo to give 2,2-dimethyl-5-propionyl-1,3-dioxane-4,6-dione (13b; $5.53 \mathrm{~g}, 92 \%$) as a red solid. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.36(\mathrm{~s}, 1 \mathrm{H}), 3.12(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.74(\mathrm{~s}, 6 \mathrm{H}), 1.26(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 198.6,170.5,159.9,104.6,90.8,53.5,29.3,26.5,9.5$.

A solution of N-acetylcysteamine (HSNAC; $0.4 \mathrm{~g}, 3.33 \mathrm{mmol}$) in benzene $\left(\mathrm{C}_{6} \mathrm{H}_{6} ; 7 \mathrm{ml}\right)$ was added to a stirred solution of $\mathbf{1 3 b}(1.0 \mathrm{~g}, 5 \mathrm{mmol})$ in $\mathrm{C}_{6} \mathrm{H}_{6}(27.8 \mathrm{ml})$. The reaction mixture was heated to reflux under a nitrogen atmosphere for 7 h . After evaporation of the solvent, the residue was purified by chromatography to give the product 3-oxopentanoyl-SNAC thioester (13) as a yellow crystalline solid $(0.47 \mathrm{~g}, 64 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.72(\mathrm{~s}, 2 \mathrm{H}), 3.49-3.44(\mathrm{~m}, 2 \mathrm{H}), 3.12-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.69-$ $2.57(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{~s}, 3 \mathrm{H}), 1.07(\mathrm{t}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 202.82, 192.36, 170.70, 56.90, 39.07, 36.70, 29.10, 23.09, 7.45 (see Figures S7,S8). Overall synthetic schemes for $\mathbf{1 3}$ are illustrated below.

Chemical synthesis of trans-2-pentenyl-SNAC thioester (14). To an oven-dried, nitrogen-purged 100-
ml round bottom flask equipped with a stir bar was added trans-2-pentenoic acid $(0.79 \mathrm{~g}, 7.92 \mathrm{mmol})$ and 50 ml of MC . After cooling to $0^{\circ} \mathrm{C}$, 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide $\cdot \mathrm{HCl}(\mathrm{EDCl} ; 1.66 \mathrm{~g}$, 8.71 mmol) and 4-(N, N-dimethylamino)pyridine (DMAP; $50.2 \mathrm{mg}, 0.42 \mathrm{mmol}$) were added to the mixture. After stirring at $0^{\circ} \mathrm{C}$ for 15 min , HSNAC ($0.94 \mathrm{~g}, 7.92 \mathrm{mmol}$) was added, and the mixture was allowed to warm to room temperature and was stirred for 4 h . After concentration in vacuo, the residue was dissolved in 50 ml of chloroform, washed successively with $0.01 \mathrm{~N} \mathrm{HCl}(3 \times 20 \mathrm{ml})$ and saturated aqueous NaCl , then dried over MgSO_{4}. After concentration in vacuo, the clear oil residue was purified by silica gel chromatography eluted with ethyl acetate:hexane (6:4) to yield 1.3 g of $14(6.47 \mathrm{mmol}, 82 \%)$. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.04-6.93(\mathrm{~m}, 1 \mathrm{H}), 6.12(\mathrm{~d}, 1 \mathrm{H}), 3.45(\mathrm{q}, 2 \mathrm{H}), 3.09(\mathrm{t}, 2 \mathrm{H}), 2.31-2.20(\mathrm{~m}$, $2 \mathrm{H}), 1.98(\mathrm{~s}, 3 \mathrm{H}), 1.09(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 190.42,170.50,147.88,127.40,39.70$, $28.15,25.30,23.14,11.98$ (see Figures S9,S10). The synthetic scheme for 14 is illustrated below.

Trans-2-pentenoic acid
14

Chemical synthesis of pentanoyl-SNAC thioester (15). To a 50-ml two-necked round-bottom flask containing diethyl propylmalonic acid $(2.0 \mathrm{~g}, 10.0 \mathrm{mmol})$ and ethanol $(\mathrm{EtOH}, 5.0 \mathrm{ml})$ was added aqueous NaOH solution $(6 \mathrm{M}, 5.0 \mathrm{ml})$. The reaction was refluxed for 6 h , then neutralized with concentrated HCl ($6 \mathrm{M}, 8.25 \mathrm{ml}$). The organic phase was extracted with diethyl ether and washed with water and brine. The combined organic phase was dried over MgSO_{4} and the volatile fraction was evaporated to afford propylmalonic acid as a white solid ($1.26 \mathrm{~g}, 87 \%$), which was used directly for the next step. ${ }^{1} \mathrm{H}$ NMR ($\left.250 \mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 3.37(\mathrm{t}, 1 \mathrm{H}), 1.89-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.45-1.39(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.5 $\left.\mathrm{MHz},\left(\mathrm{CD}_{3}\right)_{2} \mathrm{CO}\right): \delta 171.01,52.32,31.55,21.17,14.03$.

Propylmalonic acid ($0.73 \mathrm{~g}, 5.0 \mathrm{mmol}$) was dissolved in dimethylformamide (DMF, 50 ml) at $0{ }^{\circ} \mathrm{C}$, treated with diphenylphosphoryl azide $\left(\mathrm{Ph}_{2} \mathrm{P}(\mathrm{O})_{3} \mathrm{~N}_{3} ; 1.63 \mathrm{ml}, 7.5 \mathrm{mmol}\right)$ and triethylamine $\left(\mathrm{Et}_{3} \mathrm{~N}\right.$; $1.39 \mathrm{ml}, 10.0 \mathrm{mmol})$, then stirred for 2 h . HSNAC $(0.54 \mathrm{ml}, 5.0 \mathrm{mmol})$ was added and the mixture was
stirred at room temperature for an additional 3 h . The reaction was quenched by adding water (100 ml) and then extracted twice with ethyl acetate. The organic layer was evaporated, dried with anhydrous MgSO_{4}, and purified by silica gel chromatography eluted with MC: methanol (20:1) to give $\mathbf{1 5}$ (0.87 g , 85%) as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.42(\mathrm{q}, 2 \mathrm{H}), 3.03(\mathrm{t}, 2 \mathrm{H}), 2.58(\mathrm{t}, 2 \mathrm{H}), 1.98(\mathrm{~s}$, $3 \mathrm{H}), 1.71-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.92(\mathrm{t}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 200.11,170.43$, 43.78, 39.61, 28.32, 27.64, 23.11, 22.02, 13.66 (see Figures S11,S12). The overall synthetic schemes for 15 are illustrated below.

Chemical synthesis of allylmalonyl-SNAC thioester (16). Allylmalonic acid ($0.2 \mathrm{~g}, 1.38 \mathrm{mmol}$) was dissolved in dry tetrahydrofuran (THF; 0.84 ml). To this solution, pyridine (0.24 ml) and tert-butanol (0.24 $\mathrm{ml}, 2.51 \mathrm{mmol}$) were added with stirring. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and methanesulfonyl chloride $(0.11 \mathrm{ml}, 1.42 \mathrm{mmol})$ was added over 10 min . The mixture was stirred at room temperature for 3 h and then filtered to remove the pyridine hydrochloride salt. The filtrate was diluted in water $(10 \mathrm{ml})$. This solution was brought to $\mathrm{pH} \sim 11$ using 4 N NaOH , then washed with MC ($3 \times 5 \mathrm{ml}$). The aqueous layer was acidified to $\mathrm{pH} \sim 3$ with concentrated HCl and extracted with $\mathrm{MC}(4 \times 5 \mathrm{ml})$. Evaporation of MC afforded 16a as a colorless oil ($0.2 \mathrm{~g}, 71 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.52(\mathrm{~s}, 1 \mathrm{H}), 5.85-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.18-5.01(\mathrm{~m}$, $2 \mathrm{H}), 3.39(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 176.0$, 171.0, 136.3, 114.1, 72.3, 51.0, 28.0, 27.1.

To an oven-dried, nitrogen-purged $15-\mathrm{ml}$ round-bottom flask equipped with a stir bar was added 16a ($0.15 \mathrm{~g}, 0.75 \mathrm{mmol}$) and 5 ml of MC . After cooling to $0^{\circ} \mathrm{C}, \mathrm{EDCl}(0.16 \mathrm{~g}, 0.82 \mathrm{mmol})$ and DMAP $(4.75 \mathrm{mg}, 0.04 \mathrm{mmol})$ were added successively to the mixture. The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then HSNAC ($0.12 \mathrm{ml}, 1.12 \mathrm{mmol}$) was added. The reaction mixture was stirred overnight at room temperature, then concentrated in vacuo. The residue was dissolved in 25 ml of chloroform, washed
with $0.01 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{ml})$ and then brine, then dried over MgSO_{4}. Concentration in vacuo gave a clear oil, which was purified by silica gel chromatography eluted with ethyl acetate:hexane (6:4), to yield $\mathbf{1 6 b}$ $(0.19 \mathrm{~g}, 0.63 \mathrm{mmol}, 84 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.97(\mathrm{~s}, 1 \mathrm{H}), 5.83-5.16(\mathrm{~m}, 1 \mathrm{H}), 5.16-5.05(\mathrm{~m}$, $2 \mathrm{H}), 3.58(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49-3.40(\mathrm{~m}, 2 \mathrm{H}), 3.11-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.66-2.60(\mathrm{~m}, 2 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}$, 9H); ${ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.3,170.4,167.2,133.7,117.7,82.5,60.3,39.4,33.3,28.7,27.8$, 23.1.

A solution of $\mathbf{1 6 b}(0.9 \mathrm{~g}, 3.0 \mathrm{mmol})$ in trifluoroacetic acid (TFA; 25 ml$)$ was stirred for 12 h at $0^{\circ} \mathrm{C}$. The TFA was removed in vacuo, and the residue was repeatedly dissolved in benzene and concentrated in vacuo to afford 0.67 g of $\mathbf{1 6}(2.72 \mathrm{mmol}, 91 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 5.89-5.62$ $(\mathrm{m}, 1 \mathrm{H}), 5.16-5.02(\mathrm{~m}, 2 \mathrm{H}), 3.73(\mathrm{t}, 2 \mathrm{H}), 3.39-3.34(\mathrm{~m}, 1 \mathrm{H}), 3.10-3.04(\mathrm{~m}, 2 \mathrm{H}), 2.68-2.32(\mathrm{~m}, 2 \mathrm{H}), 1.94(\mathrm{~s}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 195.46,172.23,168.36,133.05,118.30,59.34,39.92,38.64,33.18$, 21.99 (see Figures S13,S14). The overall synthetic schemes for 16 are illustrated below.

Chemical synthesis of propylmalonyl-SNAC thioester (17). Propylmalonic acid ($0.2 \mathrm{~g}, 1.37 \mathrm{mmol}$) was dissolved in dry THF (0.84 ml). Pyridine (0.24 ml) and tert-butanol $(0.24 \mathrm{ml}, 2.51 \mathrm{mmol})$ were added with stirring. After cooling to $0^{\circ} \mathrm{C}$, methanesulfonyl chloride ($0.11 \mathrm{ml}, 1.42 \mathrm{mmol}$) was added over 10 min . The mixture was stirred at room temperature for 3 h and then filtered to remove the pyridine hydrochloride salt. The filtrate was diluted in water $(10 \mathrm{ml})$. This solution was brought to $\mathrm{pH} \sim 11$ using 4 N NaOH and then washed with MC ($3 \times 5 \mathrm{ml}$). The aqueous layer was acidified to $\mathrm{pH} \sim 3$ with concentrated HCl and
extracted with MC ($4 \times 5 \mathrm{ml}$). Evaporation of the solvent afforded $\mathbf{1 7 a}$ as a colorless oil $(0.19 \mathrm{~g}, 70 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 11.51(\mathrm{~s}, 1 \mathrm{H}), 3.30(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.82(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.45-$ $1.33(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 177.0,172.0,73.2,52.0,29.0,27.1$, 19.7, 13.7.

To a solution of $\mathbf{1 7 a}(0.15 \mathrm{~g}, 0.75 \mathrm{mmol})$ in $\mathrm{MC}(5 \mathrm{ml})$ were successively added $\mathrm{EDCl}(0.16 \mathrm{~g}$, $0.82 \mathrm{mmol})$ and DMAP ($4.75 \mathrm{mg}, 0.04 \mathrm{mmol}$). The mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min and then HSNAC ($0.12 \mathrm{ml}, 1.12 \mathrm{mmol}$) was added. The reaction mixture was stirred overnight at room temperature, then concentrated in vacuo. The residue was dissolved in 20 ml of chloroform and washed successively with $0.01 \mathrm{~N} \mathrm{HCl}(3 \times 10 \mathrm{ml})$ and brine, then dried over MgSO_{4}. After concentration in vacuo, the clear oil residue was purified by silica gel chromatography eluted with ethyl acetate:hexane (6:4) to yield $\mathbf{1 7 b}$ (0.2 g , $0.64 \mathrm{mmol}, 87 \%) .{ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 6.23(\mathrm{~s}, 1 \mathrm{H}), 3.53-3.42(\mathrm{~m}, 3 \mathrm{H}), 3.11-3.04(\mathrm{~m}, 2 \mathrm{H}), 1.97$ $(\mathrm{s}, 3 \mathrm{H}), 1.88-1.84(\mathrm{~m}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.39-1.30(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (62.5 MHz , $\left.\mathrm{CDCl}_{3}\right): \delta 196.0,170.5,167.9,82.2,60.8,39.4,31.4,28.6,27.8,23.1,20.4,13.7$.

In an oven-dried, nitrogen-purged $50-\mathrm{ml}$ round-bottom flask equipped with a stir bar, compound $\mathbf{1 7 b}(0.91 \mathrm{~g}, 3.0 \mathrm{mmol})$ was cooled to $0{ }^{\circ} \mathrm{C}$, then 25 ml of TFA was added and the mixture was stirred for 24 h at $0^{\circ} \mathrm{C}$. After evaporation of TFA in vacuo, the residue was repeatedly dissolved in benzene and concentrated in vacuo to afford 0.67 g of $\mathbf{1 7}(2.70 \mathrm{mmol}, 90 \%) .{ }^{1} \mathrm{H} \mathrm{NMR}\left(250 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 3.63(\mathrm{t}$, $2 \mathrm{H}), 3.46-3.43(\mathrm{~m}, 1 \mathrm{H}), 3.20-2.98(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.85(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 196.57,172.86,171.86,59.73,39.48,31.55,28.44,22.45,20.46$, 13.65 (see Figures S15,S16). The overall synthetic schemes for $\mathbf{1 7}$ are illustrated below.

Chemical synthesis of allylmalonyl-CoA (9). To a solution of allylmalonic acid ($0.5 \mathrm{~g}, 3.47 \mathrm{mmol}$) and thiophenol ($0.35 \mathrm{ml}, 3.42 \mathrm{mmol}$) in DMF (35 ml), a solution of dicyclohexylcarbodiimide (DCC, 0.87 g , 0.61 mmol) in dimethylformamide (50 ml) was added over 2 h at $0^{\circ} \mathrm{C}$. Stirring was continued for an additional 3 h at $0{ }^{\circ} \mathrm{C}$, then the reaction was quenched by adding 10 ml of water. The precipitated dicyclohexyl urea was filtered, and the filtrate was acidified with 1 N HCl to pH 2.5 . The monothiophenyl ester present in the filtrate was extracted with ether $(4 \times 100 \mathrm{ml})$. The combined organic extracts were washed with 0.1 N HCl and then concentrated in vacuo until the volume of the solution was $\sim 50 \mathrm{ml}$. The monothiophenyl ester present in the ether was extracted with 0.2 N sodium bicarbonate $\left(\mathrm{NaHCO}_{3}\right)$. The aqueous phase was extracted with 50 ml of ether to remove traces of thiophenol and dithiophenyl ester. Then, the pH was adjusted with cold 1 N HCl to ~ 2. The monothiophenyl ester was extracted again with ether $(2 \times 100 \mathrm{ml})$. The combined organic extracts were washed with brine $(50 \mathrm{ml})$ and dried over anhydrous sodium sulfate, then filtered and concentrated in vacuo to give $\mathbf{9 a}(0.65 \mathrm{~g})$ as a white solid (yield $=81 \%$). ${ }^{1} \mathrm{H}$ NMR ($250 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 10.01(\mathrm{~s}, 1 \mathrm{H}), 7.45(\mathrm{~s}, 5 \mathrm{H}), 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.26-5.15$ $(\mathrm{m}, 2 \mathrm{H}), 3.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80-2.74(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($62.5 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 192.7,173.6,134.5$, 133.1, 129.9, 129.4, 126.6, 118.5, 58.8, 33.4 ppm.

To 10 mg of CoA ester (CoA; $12 \mu \mathrm{~mol}$) dissolved in $167 \mu \mathrm{l}$ of $0.1 \mathrm{M} \mathrm{NaHCO} 3(\mathrm{pH} 8.0)$ was added monothiophenyl ester $\mathbf{9 a}(15.44 \mathrm{mg}, 65.3 \mu \mathrm{~mol})$ in $100 \mu \mathrm{l}$ of $0.1 \mathrm{M} \mathrm{NaHCO}_{3}$ at $0^{\circ} \mathrm{C}$. The solution pH was
adjusted by addition of a cold 0.2 N NaOH solution to ~ 8, then stirring was continued for 6 h at $0{ }^{\circ} \mathrm{C}$. The reaction was quenched by acidification to pH 4 with 0.5 N HCl , then the mixture was extracted with ether $(4 \times 10 \mathrm{ml})$ to remove traces of monothiophenyl ester and thiophenol. The aqueous phase was extracted with ethyl acetate $(5 \times 10 \mathrm{ml})$ to remove the allylmalonic acid and then lyophilized to give 11.5 mg of allylmalonyl-CoA (9; yield $=98 \%) .{ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta 8.57(\mathrm{~s}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 6.18(\mathrm{~d}, 1 \mathrm{H})$, 5.90-5.84(m, 1H), 5.12 (d, 2H), 5.07-5.02 (m, 1H), 4.69-4.59 (m, 1H), $4.25(\mathrm{~s}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 2 \mathrm{H}), 3.84-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 3.75-3.68(\mathrm{~m}, 2 \mathrm{H}), 3.43-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.38-3.31(\mathrm{~m}, 2 \mathrm{H}), 3.18(\mathrm{t}, 1 \mathrm{H}), 3.08-3.01(\mathrm{~m}, 2 \mathrm{H})$, $2.57(\mathrm{t}, 2 \mathrm{H}), 2.59-2.44(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H}), 0.74(\mathrm{~s}, 3 \mathrm{H})$ (see Figure S21). The overall synthetic schemes for $\mathbf{9}$ are illustrated below.

Chemical synthesis of trans-2-pentenyl-CoA (11). To a solution of trans-2-pentenoic acid (18.62 mg , 0.186 mmol , 6 equiv.) in anhydrous THF (8 ml), cooled to $0^{\circ} \mathrm{C}$ and under nitrogen, was added $\mathrm{Et}_{3} \mathrm{~N}(26$ $\mu \mathrm{l}, 0.186 \mathrm{mmol}, 6$ equiv.) followed by ethyl chloroformate ($18 \mu \mathrm{l}, 0.188 \mathrm{mmol}, 6$ equiv.), and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 45 min . The stirring was then stopped to allow the resulting solid to precipitate. The clear THF supernatant was added slowly to a solution of hydrated CoA ($24 \mathrm{mg}, 0.031 \mathrm{mmol}, 1$ equiv.) and $\mathrm{NaHCO}_{3}(15 \mathrm{mg}, 0.18 \mathrm{mmol})$ in double distilled water (3 ml). The reaction mixture was stirred at room temperature for 4 h after which the THF was removed under vacuum. The aqueous solution was acidified to pH 3 using 1 N HCl and then extracted with ethyl acetate $(3 \times 3 \mathrm{ml})$ to remove excess trans-2-pentenoic acid. The aqueous solution was then lyophilized and the resulting solid was washed with methanol to afford trans-2-pentenyl-CoA (11) as a white solid. ${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right): \delta$ $8.79(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~s}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 1 \mathrm{H}), 6.42-6.35(\mathrm{~m}, 1 \mathrm{H}), 6.30(\mathrm{~d}, 1 \mathrm{H}), 5.11-5.01(\mathrm{~m}, 1 \mathrm{H}), 4.65-$ $4.60(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 1 \mathrm{H}), 4.16(\mathrm{~s}, 1 \mathrm{H}), 4.04-3.98(\mathrm{~m}, 2 \mathrm{H}), 3.79-3.73(\mathrm{~m}, 2 \mathrm{H}), 3.68-3.47(\mathrm{~m}, 1 \mathrm{H}), 3.32(\mathrm{t}$,
$2 \mathrm{H}), 3.19(\mathrm{t}, 2 \mathrm{H}), 2.49-2.33(\mathrm{~m}, 2 \mathrm{H}), 1.99-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.38(\mathrm{t}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 3 \mathrm{H}), 0.96(\mathrm{~s}, 3 \mathrm{H})$ (see
Figure S18). The synthetic scheme for $\mathbf{1 1}$ is illustrated below.

Construction of in-frame gene deletion plasmids. pGEM-T Easy Vector (Promega) and Litmus28 (New England Biolabs) were used for routine subcloning. E. coli-Streptomyces shuttle vector $\mathrm{pKC1} 139^{6}$ was used for in-frame gene deletion. To delete nine tcs genes ($t c s A, t c s B, t c s C, t c s D, t c s 1, t c s 2$, $t c s 3$, $t c s 4$, and $t c s 5$) and $f k b A$ in Streptomyces sp. KCTC 11604BP, the construction of recombinant plasmids was carried out by PCR amplification of the left- and right-flanking fragments from fosmid (fos1004F01) DNA derived from Streptomyces sp. KCTC 11604BP. One gene was targeted in each reaction. The primer pairs TcsALF/TcsALR, TcsBLF/TcsBLR, TcsCLF/TcsCLR, TcsDLF/TcsDLR, Tcs1LF/Tcs1LR, Tcs2LF/Tcs2LR, Tcs3LF/Tcs3LR, Tcs4LF/Tcs4LR, Tcs5LR/Tcs5LF, and FkbALF/FkbALR were designed for the amplification of left-flanking fragments of target genes, whereas TcsARF/TcsARR, TcsBRF/TcsBRR, TcsCRF/TcsCRR, TcsDRF/TcsDRR, Tcs1RF/Tcs1RR, Tcs2RF/Tcs2RR, Tcs3RF/Tcs3RR, Tcs4RF/Tcs4RR, Tcs5RR/Tcs5RF, and FkbARF/FkbARR were for right-flanking fragments (Table S8). A total of 20 PCR fragments were separately cloned in pGEM-T Easy vector and sequenced. After digestion with appropriate restriction enzymes, the fragments were cloned into pKC1139 digested with HindIII-EcoRI or HindIII-XbaI, to construct 10 different in-frame deletion plasmids: $\mathrm{p} \Delta \mathrm{TCSA}, \mathrm{p} \Delta T \mathrm{TCB}, \mathrm{p} \Delta \mathrm{TCSC}, \mathrm{p} \Delta \mathrm{TCSD}, \mathrm{p} \Delta T C S 1, \mathrm{p} \Delta T C S 2, \mathrm{p} \Delta T C S 3, \mathrm{p} \Delta T C S 4, \mathrm{p} \Delta T C S 5$ and $\mathrm{p} \Delta \mathrm{FKBA}$ (Table S7).

Construction of protein expression plasmids. pET15b (Novagen) containing an N-terminal His ${ }_{6}$-tag was used for the expression of recombinant $\mathrm{ACP}_{\text {tcsa }}$ and Sfp (PPTase), whereas N, C-terminal His_{6}-tagged
pET28a (Novagen) was used for TcsC. Amplification of $t c s C$ was accomplished with the primers TcsCF and TcsCR. The PCR product was cloned into pET28a to generate pTCSC with an N, C-terminal His_{6}-tag (Tables $\mathbf{S 7}$,S8). Amplification of the DNA fragments containing $\mathrm{ACP}_{\text {tcsA }}$ domain in $t c s A$ was accomplished with the primers TcsAF and TcsAR. The PCR product was cloned into pET 15 b to produce pTCSA-ACP with an N -terminal His_{6}-tag (Tables S7,S8). The gene $s f p$ encoding 4'-phosphopantetheinyl transferase (PPTase) from Bacillus subtilis was amplified by PCR from pGF101 ${ }^{7}$ using primers SfpF and SfpR. The PCR product was cloned into pET15b to generate pSFP with an N-terminal His ${ }_{6}$-tag (Tables S7, S8). Amplication of $t c s D$ was performed using primers TcsDF and TcsDR. The PCR product was cloned into $\mathrm{pET15b}$ to generate pTCSD 1 with an N -terminal His_{6}-tag. This plasmid was digested with $X b a \mathrm{I}$ and HindIII and then cloned into pSE 34 , yielding pTCSD.

Gene deletion. The plasmids used for in-frame gene deletion are summarized in Table S7. They were introduced into Streptomyces sp. KCTC 11604BP by conjugation from ET12567/pUZ8002 ${ }^{1}$ and then target genes were deleted by homologous recombination. A strain in which a single crossover between deletion plasmid and the KCTC 11604BP chromosome had occurred was selected by cultivation of an apramycinresistant transconjugant at $37^{\circ} \mathrm{C}$ (the non-permissive temperature for the pSG5-based replicon) in the presence of apramycin. One such colony was then subjected to three rounds of propagation in the absence of selection at $30^{\circ} \mathrm{C}$ to allow for the second crossover. The ten desired double crossover mutants, $\Delta \operatorname{tcsA}$, $\Delta \operatorname{tcsB}, \Delta \mathrm{tcsC}, \Delta \mathrm{tcsD}, \Delta \mathrm{tcs} 1, \Delta \mathrm{tcs} 2, \Delta \mathrm{tcs} 3, \Delta \operatorname{tcs} 4, \Delta \mathrm{tcs} 5$, and $\Delta \mathrm{fkbA}$, were selected by their apramycinsensitive phenotype, then verified by PCR and selectively confirmed by Southern blot analysis (see Table S7).

Chemical complementation of the four tcs deletion mutants with acyl-SNAC thioesters. Seed cultures of the mutant strains were grown in R2YE medium for 2 d at $28^{\circ} \mathrm{C}$ and then used as $50-\mathrm{mg}$ (wet weight) inocula for $50-\mathrm{ml}$ liquid cultures of the same medium as described above. 3-Oxopentanoyl- (13), trans-2-pentenyl- (14), pentanonyl- (15), allylmalonyl- (16), and propylmalonyl- (17) SNAC thioesters
were added to separate culture of mutants of Streptomyces sp. KCTC 11604BP (strains Δ tcsA, $\Delta \operatorname{tcsB}$, $\Delta \mathrm{tcsC}$, and $\Delta \mathrm{tcsD}$) at a final concentration of 10 mM on 3 d . The production cultures were grown for 5 d at $28^{\circ} \mathrm{C}$ as described above. The culture broth was collected by vacuum filtration, and then extracted twice with an equal volume of ethyl acetate ${ }^{18}$. The organic extract was evaporated to dryness under reduced pressure and then dissolved in 0.2 ml methanol for HPLC-ESI-MS/MS analysis (Figure 4; see Methods). Independent experiments were carried out in triplicate.

Measurement of labeled precursor incorporation rate using [$1-{ }^{13}$ C]pentanoic acid (19). Following

 the general feeding procedure as described above, $\left[1-{ }^{13} \mathrm{C}\right] 19$ ($1.03 \mathrm{~g} / \mathrm{l}$) was added to the $t c s B$ in-frame deletion mutant (Δ tcsB strain). $\left[8-{ }^{13} \mathrm{C}, 20-{ }^{13} \mathrm{C}, 22-{ }^{13} \mathrm{C}\right]$ FK506 (1; 4.32 mg), $\left[8-{ }^{13} \mathrm{C}, 22-{ }^{13} \mathrm{C}\right]$ FK520 (2; 1.91 mg), and $\left[8-{ }^{13} \mathrm{C}, 22-{ }^{13} \mathrm{C}\right]$ FK523 ($\mathbf{1 2} ; 1.54 \mathrm{mg}$) were purified via reversed-phase HPLC (Watchers C ${ }_{18}$, $5 \mu \mathrm{~m}, 250 \times 4.6 \mathrm{~mm}$, flow rate $1.0 \mathrm{ml} / \mathrm{min}$, detection at $205 \mathrm{~nm}, 50^{\circ} \mathrm{C}$) using an isocratic gradient of 60% (v/v) aqueous acetonitrile. 1, 2, and $\mathbf{1 2}$ were eluted at 27.5, 26.0, and 20.0 min , respectively (see Figure S17).Production of FK506 analogs. The Δ tcsB mutant of Streptomyces sp. KCTC 11604BP was grown as described above. Trans-2-hexenoic acid (20), 4-methylpentanoic acid (21), and 4-fluorocrotonic acid (22) were supplemented as described above in $50-\mathrm{ml}$ cultures at a final concentration of 10 mM .

36,37-Dihydro-37-methyl-FK506 (23). The broth (300 ml) to which 343 mg of 20 had been added was harvested, and the cell-free broth was extracted with ethyl acetate as described above. Evaporation of the ethyl acetate under reduced pressure left approximately 0.1 g of reddish foam. HPLC purification of this material gave a trace amount of 23; HR-ESI-MS: $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 837.0682$ (calculated for $\mathrm{C}_{45} \mathrm{H}_{73} \mathrm{NO}_{12}$, 837.0606); fragmented product ions: $784.3\left[\mathrm{M}+\mathrm{NH}_{4}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 766.3\left[\mathrm{M}+\mathrm{NH}_{4}-4 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 752.3\left[\mathrm{M}+\mathrm{NH}_{4}{ }^{-}\right.$ $\left.4 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}, 734.3\left[\mathrm{M}+\mathrm{NH}_{4}-5 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}, 592.2,574.3\left[592.2-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 564.3\left[592.2-\mathrm{C}_{2} \mathrm{H}_{4}\right]^{+}, 548.2$ [592.2$\left.\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{2}\right]^{+}$(see Figure $\mathbf{S 2 2}$ for ESI-MS/MS spectrum of 23).

36-Methyl-FK506 (24). The broth (18.0 liters) to which 20.9 g of $\mathbf{2 1}$ had been added was harvested, and the cell-free broth was extracted with ethyl acetate as described above. Evaporation of the ethyl acetate under reduced pressure left approximately 1.5 g of reddish foam. HPLC purification of this material gave 24 (1.2 mg); HR-ESI-MS: m/z $\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 835.0499$ (calculated for $\mathrm{C}_{45} \mathrm{H}_{71} \mathrm{NO}_{12}, 835.0447$); fragmented product ions: $782.3\left[\mathrm{M}+\mathrm{NH}_{4}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 764.2\left[\mathrm{M}+\mathrm{NH}_{4}-4 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 750.2\left[\mathrm{M}+\mathrm{NH}_{4}-4 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}, 732.2$ $\left[\mathrm{M}+\mathrm{NH}_{4}-5 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}, 590.1,572.2\left[590.2-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 562.3\left[590.2-\mathrm{C}_{2} \mathrm{H}_{4}\right]^{+}, 546.3\left[590.2-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{2}\right]^{+}, 528.3$ $\left[590.2-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{2}\right]^{+}, 514.2\left[590.2-2 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}$. The ESI-MS/MS and NMR spectra of $\mathbf{2 4}$ are illustrated in Figures S23 to S28 and Table S9.

36-Fluoro-FK520 (25). The broth (1.6 liters) to which 200 mg of $\mathbf{2 2}$ had been added was harvested, and the cell-free broth was extracted with ethyl acetate as described above. Evaporation of the ethyl acetate under reduced pressure left approximately 0.3 g of reddish foam. HPLC purification of this material gave $25(0.7 \mathrm{mg})$; HR-ESI-MS: $\mathrm{m} / \mathrm{z}\left[\mathrm{M}+\mathrm{NH}_{4}\right]^{+} 827.0050$ (calculated for $\mathrm{C}_{43} \mathrm{H}_{68} \mathrm{FNO}_{12}, 827.0012$); fragmented product ions: $774.2\left[\mathrm{M}+\mathrm{NH}_{4}-3 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 756.3\left[\mathrm{M}+\mathrm{NH}_{4}-4 \mathrm{H}_{2} \mathrm{O}\right]^{+}, 742.3\left[\mathrm{M}+\mathrm{NH}_{4}-4 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}, 724.3$ $\left[\mathrm{M}+\mathrm{NH}_{4}-5 \mathrm{H}_{2} \mathrm{O}-\mathrm{CH}_{2}\right]^{+}, 582.1,564.1\left[582.1-\mathrm{H}_{2} \mathrm{O}\right]^{+}, 538.1\left[582.1-\mathrm{H}_{2} \mathrm{O}-\mathrm{C}_{2} \mathrm{H}_{2}\right]^{+}$. The ESI-MS/MS and NMR spectra of $\mathbf{2 5}$ are illustrated in Figures S29 to S35 and Table S10.

Phylogenetic analysis and sequence alignment of $t c s A$ through $t c s D$, and the AT4 domain in $f k b B$.

Gene sequences obtained from GenBank were manually edited and aligned based on their protein sequence using the ClustalX ${ }^{19}$ and MEGA 4^{20} programs. Deduced amino acid sequences of the AT domain in TcsA, the ACP domain in TcsA, as well as the TcsB, TcsC, TcsD, and the AT domain of module 4, were used as queries to search for related proteins in the nr protein database at NCBI using the BLASTP algorithm with default parameters. Distances were calculated with the Dayhoff-PAM matrix using PROTDIST and then a neighbor-joining tree was produced using NEIGHBOUR in the PHYLogeny Interface Package v3.65 (PHYLIP) ${ }^{21}$. One hundred bootstrap resamplings were performed using

SEQBOOT and CONSENSE in the PHYLIP package.

Preparation and purification of a recombinant $\mathbf{A C P}_{\text {tesA }}$, TcsC, Sfp and TesD. For the expression and purification of the ACP domain of TcsA $\left(\mathrm{ACP}_{\text {tcsA }}\right)$, the expression plasmid pTCSA-ACP was introduced into E.coli BL21(DE3)pLysS and the BL21(DE3)pLysS/pTCSA-ACP strain was grown in LB medium supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin, and $25 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. Each liter of culture was inoculated with 10 ml of overnight starter culture. The culture was grown at $37^{\circ} \mathrm{C}$ to an optical density (OD_{600}) of 0.6 , then expression was induced with 0.1 mM isopropyl- β-D-thiogalactopyranoside (IPTG). At the same time, the incubation temperature was shifted from 37 to $18^{\circ} \mathrm{C}$ and the culture was grown for another 15 to 16 h . Cells were harvested by centrifugation (10 min at $6,000 \times \mathrm{g}$), re-suspended in lysis buffer (50 mM sodium phosphate buffer, pH 8.0 , containing 300 mM NaCl and 10 mM imidazole), and then lysed by sonication. The lysate was clarified by centrifugation (30 min at $15,000 \times g$). Recombinant $\mathrm{ACP}_{\text {tcsA }}$ was purified by Ni -affinity chromatography according to the manufacturer's recommendations (Qiagen). The purified protein was subjected to 13\% SDS-PAGE and visualized with Coomassie blue staining. The resultant protein was dialyzed against 50 mM phosphate buffer (pH 7.2) containing 1 mM EDTA, 1 mM dithiothreitol (DTT) and 10% glycerol, and then stored at $-80^{\circ} \mathrm{C}$ before use in the in vitro reaction.

For the expression and purification of TcsC, the expression plasmid pTCSC was introduced into E.coli $\operatorname{BL} 21(\mathrm{DE} 3)$, and the BL21(DE3)/pTCSC strain was grown in LB medium supplemented with 50 $\mu \mathrm{g} / \mathrm{ml}$ kanamycin. Each liter of culture was inoculated with 10 ml of overnight starter culture. The culture was grown at $37^{\circ} \mathrm{C}$ to an OD_{600} of 0.6 , then expression was induced with 0.1 mM IPTG. At the same time, the incubation temperature was shifted from 37 to $28^{\circ} \mathrm{C}$ and the culture was grown for another 15 to 16 h . Recombinant TcsC was purified as described above.

For the expression and purification of Sfp (PPTase), the expression plasmid pSFP was introduced into E.coli BL21(DE3) pLysS, and the BL21(DE3)pLysS/pSFP strain was grown in LB medium
supplemented with $50 \mu \mathrm{~g} / \mathrm{ml}$ ampicillin and $25 \mu \mathrm{~g} / \mathrm{ml}$ chloramphenicol. Each liter of culture was inoculated with 10 ml of overnight starter culture. The culture was grown at $37^{\circ} \mathrm{C}$ to an OD_{600} of 0.6 , then expression was induced with 0.1 mM IPTG. The culture was grown for another 4 h . Recombinant Sfp was also purified as described above.

For the expression and purification of TcsD, pTCSD was introduced into another heterologous host S. lividans TK24, by transformation via a standard method ${ }^{13}$. The resulting S. lividans TK24/pTCSD was grown in YEME medium with $25 \mu \mathrm{~g} / \mathrm{ml}$ of thiostrepton according to a previous method ${ }^{22}$. Recombinant TcsD was also purified as described above.

Protein concentrations were determined with a commercial Bio-Rad protein assay kit, and then corrected for the in vitro reactions as described below.

In vitro characterization of TcsC as 2-pentenyl-ACP carboxylase/reductase and TcsD as acyl-ACP

 dehydrogenase. As a substrate for TcsC and TcsD reactions, 2-pentenyl- $\mathrm{ACP}_{\text {tcsA }}$ was prepared by phosphopantetheinylation of apo- $\mathrm{ACP}_{\mathrm{tcsA}}$ using recombinant Sfp from B. subtilis ${ }^{23}$. The reaction mixture ($50 \mu \mathrm{l}$), which contained $340 \mu \mathrm{M}$ recombinant apo- $\mathrm{ACP}_{\mathrm{tcsA}}, 100 \mathrm{mM}$ sodium phosphate buffer (pH 7.2), $100 \mathrm{mM} \mathrm{MgCl} 2,2.5 \mathrm{mM}$ trans-2-pentenyl-CoA (11), and $10 \mu \mathrm{M}$ recombinant Sfp, was incubated at $37^{\circ} \mathrm{C}$ for 30 min . To collect the acylated ACP protein, 10% (v/v) trichloroacetic acid (TCA) solution was added, and the mixture was centrifuged (10 min at $13,000 \times g$). The precipitate was reconstituted in TcsC reaction mixture ($100 \mu \mathrm{l}$), which contained $10 \mu \mathrm{~g}$ recombinant TcsC, 5 mM NADPH and 33 mM NaHCO_{3}. The reactions were run for 1 h at $30^{\circ} \mathrm{C}$ to examine the reductive carboxylation activity of $\mathrm{T} \operatorname{csC}$ on trans-2-pentenyl-ACP ${ }_{\text {tcsA }}$. After the reaction, the enzymatic reaction product was also concentrated by using TCA precipitation method described above. To check the dehydrogenation activity of TcsD on trans-2-pentenyl-ACP ${ }_{\text {tcsA }}$, the precipitates obtained from the above Sfp -catalyzed reaction were separately reconstituted in TcsD reaction mixture ($100 \mu \mathrm{l}$) containing 100 mM sodium phosphate buffer (pH 7.2), 6 $\mu \mathrm{M}$ phenazine methosulfate (PMS), 0.4 mM FAD, and $8 \mu \mathrm{~g}$ recombinant TcsD, then incubated at $37^{\circ} \mathrm{C}$for 30 min , as previously reported ${ }^{24}$. Reactions to examine the enzymatic activity of TcsD (or TcsC) on propylmalonyl- $\mathrm{ACP}_{\text {tcsA }}$ (or $2 E-2,4$-pentadienyl- $\mathrm{ACP}_{\text {tcsA }}$) were sequentially conducted by dissolving the precipitate obtained by the TcsC-catalyzed (or TcsD-catalyzed) reaction into the above-mentioned TcsD (or TcsC) reaction mixture, which was then incubated at $37^{\circ} \mathrm{C}$ for 30 min (or 1 h). The same reactions using boiled TcsC and TcsD were carried out as controls.

The molecular mass of 2-pentenyl-ACP ttsA and its enzymatic reaction products were analyzed on a Waters/Micromass Quattro micro tandem ESI-MS instrument operated in the positive ion mode, scanning from 600 to $1,600 \mathrm{~m} / \mathrm{z}$. The optimized tune parameters were as follows: capillary and cone voltage at 2.0 kV and 40 V , respectively; cone gas and desolvation gas set at 150 and $650 \mathrm{l} / \mathrm{h}$, respectively; and source and desolvation temperatures at 120 and $330^{\circ} \mathrm{C}$, respectively. The mass spectra were processed and deconvoluted using MassLynx MaxEnt 1 software from Waters. The uniform Guassian model and a resolution of 0.75 Da were used for MaxEnt 1 deconvolution (see Figure 5). Protein profiles from the reaction mixtures were examined by HPLC. Samples were separated on an XTerra C_{18} column ($250 \times 4.6 \mathrm{~mm}, 5 \mu \mathrm{~m}$; Waters) interfaced with an UV detector (220 nm) using an isocratic elution of $60 \%(\mathrm{v} / \mathrm{v})$ aqueous acetonitrile containing 0.1% formic acid at a flow rate of 0.1 $\mathrm{ml} / \mathrm{min}$ over 40 min .

In vitro characterization of TcsC as 2-pentenyl-CoA carboxylase/reductase and TcsD as acyl-CoA

 dehydrogenase. Recombinant TcsC was assayed using previously reported methods with modification ${ }^{25,26}$. TcsC ($10 \mu \mathrm{~g}$) was incubated with crotonyl- (10) or trans-2-pentenyl- (11) CoA (2 mM each) in reaction buffer (100 mM Tris- $\mathrm{HCl}, \mathrm{pH} 8.0,5 \mathrm{mM} \mathrm{NADPH}$, and 33 mM NaHCO$)_{3}$) at $30^{\circ} \mathrm{C}$ for 1 h. Recombinant $\operatorname{TcsD}(8 \mu \mathrm{~g})$ was incubated with $\mathbf{1 1}(2 \mathrm{mM})$ in reaction buffer (100 mM sodium phosphate buffer, $\mathrm{pH} 7.2,0.4 \mathrm{mM}$ FAD, and $6 \mu \mathrm{M}$ PMS) at $37^{\circ} \mathrm{C}$ for 30 min . Reactions were carried out as described above for the in vitro reaction using $\mathrm{ACP}_{\text {tcsA }}$ to qualitatively determine the preferred activities of both enzymes on acyl-CoAs or acyl-ACPs. Detection of TcsC-mediated production of ethylmalonyl- (7) or propylmalonyl- (8) CoA from $100 \mu \mathrm{l}$ of reactants was carried out using HPLC-ESI-MS/MS analysis as previously described ${ }^{9}$.

Intracelluar CoA-ester profiles derived from FK506- and FK520-producing wild-type strains.

Aliquots of cultures of the wild-type FK506 (1)-producing strain Streptomyces sp. KCTC 11604BP and the FK520 (2)-producing strain S. hygroscopicus var. ascomyceticus ATCC 14891 were taken at 3 d, and were subjected to silicon-oil layer centrifugation followed by a solid-phase extraction procedure, then analyzed by HPLC-ESI-MS/MS as described above ${ }^{9}$ (see Figure S20). Authentic allylmalonyl-CoA (9) was chemically synthesized in this study (see the earlier section in Supporting Methods; Figure S21).

3-Dimensional (3D) modeling, docking and molecular dynamics simulation of $1,2,24$, and 25 in the

 presence of FKBP12-calcineurins complex. The immunosuppressive activities of the mutasynthetic novel analogs $\mathbf{2 4}$ and $\mathbf{2 5}$ were predicted before they were subjected to in vitro bioassays. Structural scaffolds of the analogs along with the known immunosuppressants $\mathbf{1}$ and $\mathbf{2}$ were docked separately into the binding sites of the refined calcineurin A / B complex using the LigandFit ${ }^{27}$ module in Discovery Studio 2.0 based on the crystal structure of the $\mathbf{1}$ /calcineurin complex ${ }^{28}$ (PDB:1TCO). The scoring function with specific parameters for the complex containing $\mathbf{1}$ analogs was used to rank the docking poses. The conformation with the lowest binding energy and the greatest number of members in the cluster, indicating good convergence, was selected as the best conformation. The best orientation was identified and optimized using the scoring function based on the CHAMM force field ${ }^{29}$ and energy minimization for induced-fit simulation ${ }^{30}$. The pose with lowest energy was selected as the initial conformation for further longtime molecular dynamics simulation.The molecular dynamics simulations were performed with the AMBER 10 program 31. The AMBER ff03 all atom force field 31^{32} was used for the protein and the general AMBER force field ${ }^{33}$ was used for docked scaffolds. The energy minimization for each complex was performed by a combination of the steepest descent method for 5,000 steps and the conjugated gradient method for another 5,000 steps. After the minimization, each system was gradually heated from 0 to 300 K over 100 ps under the
isothermal-isochoric (NVT) ensemble condition and equilibrated at 300 K for 100 ps . Finally, 10-ns position-restrained molecular dynamics simulations were conducted at 1 atm and 300 K under the isothermal-isobaric (NpT) ensemble condition ${ }^{34,35}$. During the simulation, the SHAKE algorithm ${ }^{36}$ was applied to constrain the covalent bonds to hydrogen atoms. The time step and nonbonding interaction cutoff radius were set to 2.0 fs and $10.0 \AA$, respectively. Coordinates were saved every 1.0 ps during the entire process (see Figure S36 and Supporting Notes).

Calculation of the binding free energy obtained from the virtual fixation between each FK506 analog and the FKBP12-calcineurins complex can simulate the ligand affinities around the complex, thus enabling inference of the relative immunosuppressive activities of analogs $\mathbf{2 4}$ and $\mathbf{2 5}$ compared with those of $\mathbf{1}$ and 2. The binding free energy between FK506 analogs and the calcineurin complex was calculated with the MM-PBSA approach ${ }^{37-39}$ according to the following equation $\Delta \mathrm{G}_{\text {binding }}=\Delta \mathrm{G}_{\mathrm{MM}}+\Delta \mathrm{G}_{\text {solv }}-\mathrm{T} \Delta \mathrm{S}$; $\Delta \mathrm{G}_{\text {binding }}$: binding free energy; $\Delta \mathrm{G}_{\text {Mм }}$: molecular mechanical energy; $\Delta \mathrm{G}_{\text {solv: }}$: solvation energy; $\mathrm{T} \Delta \mathrm{S}$: entropy contribution. The molecular mechanical energy is calculated by the following equation $\Delta \mathrm{G}_{\text {MM }}=\Delta \mathrm{G}_{\text {elec }}+\Delta \mathrm{G}_{\text {vdw }} ; \Delta \mathrm{G}_{\text {elec }}$: electrostatic energy; $\Delta \mathrm{G}_{\text {vdw }}$: van der Waals energy. The solvation energy is divided into two components; $\Delta \mathrm{G}_{\text {solv }}=\Delta \mathrm{G}_{\text {elec.sol }}+\Delta \mathrm{G}_{\text {nonpol.sol }}$, where $\Delta \mathrm{G}_{\text {ele.s.sol }}$ represents the electrostatic contribution to solvation energy, and $\Delta \mathrm{G}_{\text {nonpol.sol }}$ means the nonpolar solvation term. Here, the polar contribution was calculated by solving the Poisson-Boltzmann equation using the PBSA program in AMBER 10^{31}, whereas the latter is determined using $\Delta \mathrm{G}_{\text {nonpol.sol }}=\gamma(\mathrm{SASA})+\mathrm{b}$, where γ represents surface tension, b is a constant, whereas SASA is the solvent-accessible surface area $\left(\AA^{2}\right)$ determined by the LCPO method ${ }^{40}$. The coefficients γ and b were set to $0.0072 \mathrm{kcal}\left(\mathrm{mol} \cdot \AA^{2}\right)^{-1}$ and 0 , respectively ${ }^{41}$. Two hundred snapshots from the last 2.0 ns of the production stage were extracted for calculation of the binding free energy. The polar contribution term of the solvation energy was calculated using the PBSA program in AMBER 10^{31}. Normal mode analysis was conducted to estimate entropic changes using the mode program ${ }^{42}$ in AMBER 10^{29}. Fifty snapshots of each system were selected for the entropy calculation ${ }^{43-45}$ (see Table S11 and Supporting Notes).

In vitro T-cell activation assay. The relative immunosuppressive properties of the mutasynthetic analogs $\mathbf{2 4}$ and 25, compared with authentic $\mathbf{1}$ and $\mathbf{2}$, were determined using T lymphocytes as described elsewhere ${ }^{46}$. In brief, human T-cells (1×10^{6} cells/well) were activated with CD3/CD28 antibodies (BD Pharmingen; $0.5 \mu \mathrm{~g} / \mathrm{ml}$ for each), then treated with two different concentrations (0.1 and 1.0 nM) of $\mathbf{1 , 2}$, 24 and 25 for 16 to 20 hr . After removal of cell debris by routine centrifugation, the supernatant was subjected to ELISA (R\&D Systems) to quantify the level of interleukin-2 secreted from activated T-cells. The level of interleukin-2 obtained from T-cells activated with CD3/CD28 without further treatment with the above compounds was used as a control (see Figure 8).

In vitro neurite outgrowth assay using human neuroblastoma cells. The relative nerve regeneration activities of the mutasynthetic analogs $\mathbf{2 4}$ and $\mathbf{2 5}$, compared with authentic $\mathbf{1}$ and $\mathbf{2}$, were determined using human neuroblastoma cells as described elsewhere ${ }^{47,48}$. The human neuroblastoma SH-SY5Y cells were plated in a 96 -well plate (1×10^{3} cells/well) and treated with nerve growth factor (NGF; KOMA Biotech; $10 \mathrm{ng} / \mathrm{ml}$) to induce neurite outgrowth in the presence or absence of $1 \mathrm{nM} \mathbf{1 , 2 , 2 4}$ or $\mathbf{2 5}$. The cells $(\mathrm{n}=90)$ were randomly photographed after 96 hr of cultivation, then the number of cells with outgrowth was counted. The neurite lengths were measured on photographic prints as previously described ${ }^{47}$. Duplicate wells were run in all experiments, and the entire experiment was replicated with three times. Neurite length estimated from samples treated with NGF alone was used as a control (see Figure 8 and Figure S37).

Statistical analysis. For statistical comparisons of group differences, especially for both the T-cell activation and neurite outgrowth assays, quantitative data were analyzed by one-way analysis of variance (ANOVA) followed by Fisher's t-test according to the statistical program SigmaStat (Jandel Scientific; version 3.1).

Supporting Notes

The binding modes of $\mathbf{1}$ and its analogs. The effect of structural modification of the allyl group of $\mathbf{1}$ on its binding modes was investigated by analyzing molecular dynamics (MD) trajectories. Superimposition of the average structures of FK506 analogs showed that neither modification significantly altered the binding modes of the FKBP12-1-calcineurin complex. This finding indicates that the key residues of the calcineurin complex are relatively hydrophobic: $\operatorname{Trp} 352$ in calcineurin A, and Met118 and Val119 in calcineurin B. Among the amino acids in the active sites of the calcineurin complex, Ser353 is the only polar residue that provides an electrostatic interaction to orient the binding mode of $\mathbf{1}$ and its analogs. Before starting MD simulation, the hydroxyl group of Ser353 in calcineruin A pointed to the outer spheres of $\mathbf{1}$ and its analogs. After MD refinement, however, the hydroxyl group of Ser353 in both calcineurin- $\mathbf{1}$ and - $\mathbf{2 4}$ complexes was turned in the direction of their side chains, forming an electrostatic interaction as shown in Figure S36a and c. In contrast, the orientation of the hydroxyl group of Ser353 in the calcineurin-2 and -25 complexes remained outward as shown in Figure S36b and d. Although the conformations of $\mathbf{1}$ and $\mathbf{2 4}$ during MD simulation are similar, the average distance between the oxygen group of Ser353 and C37 of $\mathbf{2 4}$ (2.784A) is shorter than that of $\mathbf{1}$ (2.983 \AA). Snapshots of the active site structure of all of the above simulations shown in Figure S36 provide more detailed information regarding the interaction between the calcineurin residues and FK506 analogs including 1.

Binding free energy analysis. Binding free energies of $\mathbf{1}$ and its analogs were calculated with the MMPBSA method. The calculated binding free energies of FKBP12-FK506 analogs and the calcineurin complexes are $-6.42,-6.03,-7.78$ and $-5.82 \mathrm{kcal} / \mathrm{mol}$ for $\mathbf{1 , 2}, \mathbf{2 4}$, and $\mathbf{2 5}$, respectively, and are listed in Table S11. The calcineurin-FKBP12-24 complex had the lowest binding free energy. The electrostatic interaction of Ser353 in calcineurin A with $\mathbf{2 4}$ and the relatively short distance between the oxygen atom of Ser353 and C37 of $\mathbf{2 4}$ might have contributed to this result.

Supporting References

1. MacNeil, D. J.; Gewain, K. M.; Ruby, C. L.; Dezeny, G.; Gibbons, P. H.; MacNeil, T. Gene 1992, 111, 61.
2. Motamedi, H.; Cai, S. J.; Shafiee, A.; Elliston, K. O. Eur. J. Biochem. 1997, 244, 74.
3. Muramatsu, H.; Mokhtar, S. I.; Katsuoka, M.; Ezaki, M. Actinomycetologica 2005, 19, 33.
4. Wu, K.; Chung, L.; Revill, W. P.; Katz, L.; Reeves, C. D. Gene 2000, 251, 81.
5. Walczak, R. J.; Hines, J. V.; Strohl, W. R.; Priestley, N. D. Org. Lett. 2001, 3, 2277.
6. Bierman, M.; Logan, R.; O’Brien, K.; Seno, E. T.; Rao, R. N.; Schoner, B. E. Gene 1992, 116, 43.
7. Zhou, P.; Florova, G.; Reynolds, K. A. Chem. Biol. 1999, 6, 577.
8. Yoon, Y. J.; Beck, B. J.; Kim, B. S.; Kang, H. Y.; Reynolds, K. A.; Sherman, D. H. Chem. Biol. 2002, 9, 203.
9. Park, J. W.; Jung, W. S.; Park, S. R.; Park, B. C.; Yoon, Y. J. J. Mass Spectrom. 2007, 42, 1136.
10. Park, J. W.; Mo, S.; Park, S. R.; Ban, Y. H.; Yoo, Y. J.; Yoon, Y. J. Anal. Biochem. 2009, 393, 1.
11. Liu, Y.; Hazzard, C.; Eustáquio, A. S.; Reynolds, K. A.; Moore, B. S. J. Am. Chem. Soc. 2009, 131, 10376.
12. Shirling, E. B.; Gottlieb, D. Int. J. Syst. Bacteriol. 1966, 16, 313.
13. Kieser, T.; Bibb, M. J.; Buttner, M. J.; Chater, K. F.; Hopwood, D. A. Practical Streptomyces Genetics; Ch. 19; John Innes Foundation: Norwich, England, 2000.
14. Oki, T.; Matsuzawa, K.; Kiyoshima, K.; Yoshimoto, A.; Naganawa, H.; Takeuchi, T.; Umezawa, H. J. Antibiot. (Tokyo) 1981, 34, 783.
15. Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory Manual, 3rd ed. ; Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, 2000.
16. http://gate.smallsoft.co.kr:8080/pks
17. http://blast.ncbi.nlm.nih.gov/Blast.cgi
18. Mo, S.; Ban, Y. H.; Park, J. W.; Yoo, Y. J.; Yoon, Y. J. J. Ind. Microbiol. Biotechnol. 2009, 36, 1473.
19. Larkin, M. A.; Blackshields, G.; Brown, N. P.; Chenna, R.; McGettigan, P. A.; McWilliam, H.;

Valentin, F.; Wallace, I. M.; Wilm, A.; Lopez, R.; Thompson, J. D.; Gibson, T. J.; Higgins, D. G.
Bioinformatics 2007, 23, 2947.
20. Tamura, K.; Dudley, J.; Nei, M.; Kumar, S. Mol. Biol. Evol. 2007, 24, 1596.
21. Felsenstein, J. PHYLIP (Phylogeny Inference Package) Version 3.6. Distributed by the author; Department of Genome Sciences, University of Washington, Seattle, WA, 2005.
22. Ghatge, M. S.; Reynolds, K. A. J. Bacteriol. 2005, 187, 7970.
23. Quadri, L. E.; Weinreb, P. H.; Lei, M.; Nakano, M. M.; Zuber, P.; Walsh, C. T. Biochemistry 1998, 37, 1585.
24. Zhang, Y. X.; Denoya, C. D.; Skinner, D. D.; Fedechko, R. W.; McArthur, H. A.; Morgenstern, M. R.; Davies, R. A.; Lobo, S.; Reynolds, K. A.; Hutchinson, C. R. Microbiology 1999, 145, 2323.
25. Wallace, K. K.; Bao, Z. Y.; Dai, H.; Digate, R.; Schuler, G.; Speedie, M. K. Reynolds, K. A. Eur. J. Biochem. 1995, 233, 954.
26. Eustáquio, A. S.; McGlinchey, R. P.; Liu, Y.; Hazzard, C.; Beer, L. L.; Florova, G.; Alhamasheh, M. M.; Lechner, A.; Kale, A. J.; Kobayashi, Y.; Reynolds, K. A.; Moore, B. S. Proc. Natl. Acad. Sci. USA 2009, 106, 12295.
27. Montes, M.; Miteva, M. A.; Villoutreix, B. O. Proteins 2007, 68, 712.
28. Griffith J. P.; Kim, J. L.; Kim, E. E.; Sintchak, M. D.; Thomson, J. A.; Fitzgibbon, M. J.; Fleming, M. A.; Caron, P. R.; Hsiao, K.; Navia, M. A. Cell 1996, 82, 507.
29. Vanommeslaeghe, K.; Hatcher, E.; Acharya, C.; Kundu, S.; Zhong, S.; Shim, J.; Darian, E.; Guvench, O.; Lopes, P.; Vorobyov, I.; Mackerell, A. D. Jr. J. Comput. Chem. 2010, 31, 671.
30. Chang, C. E.; Gilson, M. K. J. Am. Chem. Soc. 2004, 126, 13156.
31. Case, D. A.; Darden, T. A.; Cheatham, T. E. III.; Simmerling, C. L.; Wang, J.; Duke, R. E.; Luo, R.; Crowley, M.; Walker, R. C.; Zhang, W.; Merz, K. M.; Wang, B.; Hayik, S.; Roitberg, A.; Seabra, G.; Kolossvary, I.; Wong, K. F.; Paesani, F.; Vanicek, J.; Wu, X.; Brozell, S. R.; Steinbrecher, T.; Gohlke, H.; Yang, L.; Tan, C.; Mongan, J.; Hornak, V.; Cui, G.; Mathews, D. H.; Seetin, M. G.; Sagui, C.;

Babin, V.; Kollman, P. A. AMBER 10; University of California, San Francisco, CA, 2008.
32. Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang, W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.; Kollman, P. J. Comput. Chem. 2003, 24, 1999.
33. Wang, J.; Wolf, R. M.; Caldwell, J. W.; Kollman, P. A.; Case, D. A. J. Comput. Chem. 2004, 25, 1157.
34. Wang, J.; Deng, Y.; Roux, B. Biophys. J. 2006, 91, 2798.
35. Cecchini, M.; Krivov, S. V.; Spichty, M.; Karplus, M. J. Phys. Chem. B 2009, 113, 9728.
36. Rychaert, J. P.; Ciccotti, G.; Berendsen, H. J. C. J. Comput. Phys. 1997, 2, 327.
37. Massova, I.; Kollman, P. A. Perspec. Drug Discov. Design 2000, 18, 113.
38. Wang, J.M.; Morin, P.; Wang, W.; Kollman, P. A. J. Am. Chem. Soc. 2001, 123, 5221.
39. Kollman, P. A.; Massova, I.; Reyes, C.; Kuhn, B.; Huo, S.; Chong, L.; Lee, M.; Lee, T.; Duan, Y.; Wang, W.; Donini, O.; Cieplak, P.; Srinivasan, J.; Case, D. A.; Cheatham, T. E. 3rd. Acc. Chem. Res. 2000, 33, 889.
40. Weiser, J.; Shenkin, P. S.; Still, W. C. J. Comput. Chem. 1999, 20, 217.
41. Weis, A.; Katebzadeh, K.; Söderhjelm, P.; Nilsson, I.; Ryde, U. J. Med. Chem. 2006, 49, 6596.
42. Brooks, B. R.; Janezic, D.; Karplus, M. J. Comput. Chem. 1995, 16, 1522.
43. Chang, C. -E. A.; Chen, W.; Gilson, M. K. Proc. Natl. Acad. Sci. USA 2007, 104, 1534.
44. Deng, Y.; Roux, B. J. Phys. Chem. B 2009, 113, 2234.
45. Karplus, M.; Kushick, J. N. Macromolecules 1981, 14, 325.
46. Choi, J. M.; Ahn, M. H.; Chae, W. J.; Jung, Y. G.; Park, J. C.; Song, H. M.; Kim. Y. E.; Shin, J. A.; Park, C. S.; Park, J. W.; Park, T. K.; Lee, J. H.; Seo, B. F.; Kim, K. D.; Kim, E. S.; Lee, D. H.; Lee, S. K.; Lee, S. K. Nat. Med. 2006, 12, 574.
47. Revill, W. P.; Voda, J.; Reeves, C. R.; Chung, L.; Schirmer, A.; Ashley, G.; Carney, J. R.; Fardis, M.; Carreras, C. W.; Zhou, Y.; Feng, L.; Tucker, E.; Robinson, D.; Gold, B. G. J. Pharmacol. Exp. Ther. 2002, 302, 1278.
48. Gold, B. G.; Densmore, V.; Shou, W.; Matzuk, M. M.; Gordon, H. S. J. Pharmacol. Exp. Ther. 1999, 289, 1202.

